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ABSTRACT
The study of animal acoustic signals is a central tool for many fields 
in ecology and evolution, but the diversity of analytical methods and 
sources of animal sound recordings poses important challenges for 
carrying out robust acoustic analyses. Sound file compression and 
background noise may both affect acoustic analysis, although little 
attention has been paid to their respective effects. We evaluated 
the effect of these factors by assessing the systematic deviation (i.e. 
bias) and measurement error (i.e. precision) that they generate on 
spectrographic parameters and two (dis)similarity methods (dynamic 
time warping on frequency contours and cross-correlation), which 
represent the most common methods currently used for quantitative 
characterization of acoustic signals. Measurements were taken across 
a wide range of signals from a diverse group of bird species, and 
compared between uncompressed files and decompressed files 
obtained from mp3-encoded files generated using the two most 
common mp3 encoders (Fraunhofer and LAME). Measurements 
were also compared across a range of synthetically-generated 
background noise levels. Compression did not significantly bias any 
of the acoustic or similarity measurements. However, the precision 
of acoustic parameters representing single extreme values (e.g. peak 
frequency) as well as dynamic time warping distances, was strongly 
affected by compression. High background noise biased most energy 
distribution-related parameters (e.g. spectral entropy) and affected 
the precision of most acoustic parameters and dynamic time warping. 
Overall, compression and background noise did have considerable 
effects on acoustic analyses. We provide recommendations to avoid 
potential pitfalls and maximize the information that can be reliably 
obtained.

Introduction

Animal acoustic signals have been an important study system for a wide variety of fields 
in ecology and evolution (Bradbury and Vehrencamp 2011). The particular usefulness of 
acoustic analyses resides in our ability to register acoustic signals with high fidelity and 
conduct very detailed and increasingly elaborated measures to characterize and compare 
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2   M. ARAYA-SALAS ET AL.

their structure (Sueur, Aubin, and Simonis 2008; Tchernichovski et al. 2000; Lachlan 2007; 
Charif et al. 2010; Araya-Salas and Smith-Vidaurre 2017). In addition, the growing avail-
ability of recordings in acoustic libraries provides an unprecedented opportunity to study 
animal acoustic signals at large temporal, geographic and taxonomic scales (Araya-Salas 
2012; Depraetere et al. 2012; Medina-García et al. 2015; Mason et al. 2016).

The diversity of both analytical methods and sources of animal sound recordings, how-
ever, poses potential challenges for carrying out robust acoustic analyses. The quality of 
recordings can be highly variable among sources. For instance, songs registered by an auto-
matic recording device would typically be noisier than those taken by a field recorder from a 
focal individual. Even within focal individual recordings, the context of the recording, such 
as distance to target, habitat structure and the proficiency of the recordist, can affect the 
amplitude at which signals are registered relative to the background noise (Zollinger et al. 
2012). Environmental noise can mask acoustic signals, potentially affecting the information 
obtained by receivers; it is considered a fundamental evolutionary force shaping animal 
acoustic signals (Morton 1975; Boncoraglio and Saino 2007). Despite being a ubiquitous 
and critical factor for acoustic communication, we are just starting to understand how noise 
can affect the ways in which acoustic signal structure is measured (Rempel et al. 2005; Ríos-
Chelén et al. 2016, 2017; Brumm et al. 2017).

Acoustic analyses might also be affected by the methods used for recording and storing 
animal vocalizations. For example, recordings are sometimes collected or preserved in 
compressed formats, leading to an irreversible information loss (i.e. ‘lossy’ compression). 
Nonetheless, the use of compressed sound files is widespread in bioacoustic research (Botero 
et al. 2009; Weir et al. 2012; Doolittle and Brumm 2013; Gonzalez-Voyer et al. 2013; Mason 
et al. 2014; Medina-García et al. 2015; Pegan et al. 2015; Araya-Salas and Smith-Vidaurre 
2017; Kaluthota et al. 2016). Sound files are typically compressed in the MPEG Audio Layer 
III lossy format (so called ‘mp3’). This format was designed to reduce the size of sound 
files by removing information on acoustic features that were unlikely to be detected by the 
human listeners, based on human acoustic perceptual biases (Sterne 2012). Indeed, mp3 files 
can significantly shrink the size of audio recording file (Sterne 2012). Surprisingly, despite 
the wide use of mp3-compressed recordings, how the loss of information affects acoustic 
measurements has not been formally evaluated, although indirect evidence suggests they 
could have a considerable effect (Medina-García et al. 2015; Towsey et al. 2016).

In this study, we evaluated the effect of two potential confounding factors in bioacoustics 
research: sound file compression and background noise. We did so by assessing systematic 
deviations (i.e. bias) and measurement variability (i.e. precision) of commonly used acoustic 
measures across a wide range of signals from a diverse group of bird species. Acoustic meas-
urements were conducted on original (uncompressed) .wav files and on .wav files derived 
from mp3-compressed files (hereafter uncompressed and compressed files, respectively), 
as well as across a range of synthetically-generated background noise levels. Our goal was 
to provide guidance for future work, helping researchers to avoid potential pitfalls and 
maximize the information that can be extracted from field recordings.

Methods

We obtained 840 recordings from sound libraries and personal collections (Table S1). The 
recordings represented 245 bird species, from 31 families and 11 orders, although most 
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BIOACOUSTICS   3

recordings came from hummingbirds (63%), parrots (27%), and songbirds (7%). Original 
sound files were recorded at a sample rate of either 44.1 or 48 kHz, and a bit depth of 16 
or 24 bits in mono or stereo format. All files were converted to 44.1 kHz, 16 bits, single 
channel (mono) wave files prior to analyses using the PCM WAVE format in the software 
Audacity 2.1.2 (Audacity-Team 2014).

We used either visual inspection (i.e. directly clicking on the spectrograms) or automatic 
detection to determine the start and end time. Visual inspection was also used for defining 
frequency ranges. Automatic detections were made based on amplitude thresholds and 
were visually checked and corrected when necessary. We also removed the lowest quality 
signals by excluding those with a signal-to-noise ratio (hereafter ‘SNR’) lower than 2 dB, 
as those signals were difficult to distinguish from the background in the spectrograms 
(Figure 1). SNR was calculated as follows: SNR = (rms(S) – rms(N))/ rms(N), where S is 
the amplitude envelope of the signal, N is the amplitude envelope of the background noise 
50 ms immediately before and after the signal and rms is the root mean square. SNR was 
then converted to decibels (SNRdB = 20 * log10(SNR)). The final data-set contained 2642 
signals from the 840 recordings described above (an average of 3.1 signals per recording).

Although several mp3 encoders have been developed, two are currently the most widely 
used (Berman 2015): LAME (free software, http://lame.sourceforge.net) and Fraunhofer 
(proprietary software, Fraunhofer Institut Integrierte Schaltungen, Germany; http://www.
iis.fraunhofer.de). These two encoders are found in the most popular software packages for 
audio file manipulation (e.g. Adobe Audition, Audacity, iTunes, Windows Media player, 
SoX), and therefore the most likely to be used by recordists converting to mp3 formats. Both 
encoders can produce mp3 files using two encoding methods: constant bit rate and variable 
bit rate (hereafter CBR and VBR, respectively). As their names suggest, CBR uses the same 
bit rate across the entire sound file while VBR increases the rate during more acoustically 
complex sections of sound files. We used both encoders (LAME and Fraunhofer) and 
encoding methods (CBR and VBR, for a total of four treatments) to generate mp3-com-
pressed files. That is, we converted the original wave files to 44.1 kHz, 16 bit and 128 kbps 
mp3 format in both CBR and VBR using both LAME and Fraunhofer encoders, and then 

Figure 1. spectrograms of a long-billed hermit (Phaethornis longirostris) song at decreasing values of 
signal-to-noise ratio (10 to −2 dB, labels on top).
Note: Background noise was synthetically generated using the R package ‘seewave’ (sueur, aubin, and simonis 2008).
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4   M. ARAYA-SALAS ET AL.

decompressed them back into 44.1 kHz 16 bit wave format (through the same encoder used 
for compressing them) for analyses, because acoustic analysis software typically requires 
uncompressed sound files. We used the most recent versions of both encoders. The LAME 
encoder (version 3.99.5) was used through the UNIX command-line interface, and the 
Fraunhofer encoder was used through Adobe Audition CS6 (version 5.0, Adobe Systems 
Inc., San Jose, CA, USA).

We measured 12 acoustic parameters on both uncompressed and compressed files: mean 
frequency, mean dominant frequency, minimum dominant frequency, maximum dominant 
frequency, peak frequency, frequency range, modulation index, 1st quartile frequency, 3rd 
quartile frequency, interquartile range, skewness and spectral entropy (Figure 2). A full 
description of the acoustic parameters is provided in Table 1. Parameters were measured 
using the ‘specan’ function from the R package ‘warbleR’ (Araya-Salas and Smith-Vidaurre 
2017). Although several other parameters can be measured by this function, we choose a 
subset representing the most commonly used acoustic measurements: parameters calculated 
across the entire signal (e.g. mean dominant frequency, spectral entropy), representing a 
single extreme value (e.g. maximum frequency, peak frequency) or derived from those (e.g. 
dominant frequency range, modulation index). Dominant frequencies were measured as the 
highest amplitude value within the predefined frequency range for every time window in the 
spectrogram. The selected parameters are also measured by the most common bioacoustic 
analysis software, making our findings relevant to most researchers working in this field. 
The analyses were conducted under a 512-point fast-Fourier transformation window length 
(for a 11.3 ms time resolution), 90% window overlap with a ‘hanning’ window function, and 
a 10% amplitude threshold for detecting dominant frequencies (relative to the maximum 
amplitude in the signal).

Figure 2. schematic diagram for seven acoustic parameters (out of 12) measured in this study.
Notes: (a) spectrogram of a White-chinned sapphire (Hylocharis cyanus) vocalization. the black dots represent the dominant 
frequency measured across the signal. (B) Frequency spectrum of the signal (i.e. relative amplitude of the frequencies; 
amplitude on the x-axis). (c) Frequency spectrum ‘slices’ across the signal, showing the dominant frequency for each time 
window. Dominant frequency is also shown as black dots on the spectrogram (a). Parameter names and descriptions are 
detailed in table 1.
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We also evaluated the effect of compression on two pairwise acoustic (dis)similarity 
methods: dynamic time warping and spectrographic cross-correlation (hereafter ‘cross- 
correlation’). Briefly, dynamic time warping measures the alignment of two numeric 
sequences as a unitless distance (e.g. dissimilarity) that penalizes mismatches between the 
sequences. This method has been successfully used to compare frequency contours of bird 
songs (e.g. the dominant frequency values across signals, Kogan and Margoliash 1998). 
Cross-correlation, on the other hand, compares the whole matrix of amplitude values in 
the bi-dimensional time-frequency space of the signals. The method ‘slides’ one spectro-
gram over the other calculating a correlation of the amplitude values at each step (Clark et 
al. 1987). The peak correlation coefficient is taken as a measure of similarity between the 
signals. This method also has been widely used in bioacoustic research (Cortopassi and 
Bradbury 2000; Cramer 2013).

For acoustic (dis)similarity analyses, pairwise comparisons were conducted on a subset 
of long-billed hermit (Phaethornis longirostris) recordings. This is a lekking species in which 
individual males have a song repertoire of only one song, songs are constantly repeated in 
a singing bout with little variation among renditions, song types are shared by subgroups 
of males within leks, and several song types can be found in a lek (Stiles and Wolf 1979; 
Araya-Salas and Wright 2013). Songs are typically composed of frequency-modulated pure 
tones with moderate harmonic structure, sometimes combined with broadband sounds 
(Figure 1). Variation in song structure in this species can be easily distinguished by visual 
inspection of spectrograms (Araya-Salas and Wright 2013). Thus, song similarity within and 
between singing neighbourhoods is expected to cover a wide range of similarities (from very 
different to very similar) on a set of signals with similar durations and frequency ranges, 
in which the performance of acoustic similarity methods can be properly assessed. Songs 
were recorded from individuals at seven leks at La Selva Biological Station between 2008 
and 2016 (Araya-Salas and Wright 2013). We paired songs from the same lek to ensure that 
comparisons contained songs from both the same and different song types. Each song was 
used in a single comparison to avoid pseudoreplication. Dynamic time warping was con-
ducted using the ‘dfDTW’ function from the R package ‘warbleR’ (Araya-Salas and Smith-
Vidaurre 2017), which extracts the dominant frequency contours as time series and returns 
a pairwise distance matrix. This function uses a smoothing spline to interpolate frequency 
values which is used to obtained frequency contours of equal length for all signals, regardless 
of their duration. The function also interpolates the frequency value in signal sections in 
which the dominant frequency did not exceed the amplitude threshold (10% in our case). 
We set the function to obtained 30 regularly spaced dominant frequency measures across 
signals. Frequency contours were z-transformed to ‘remove’ differences in absolute fre-
quency and focus the comparison on contour shapes. Cross-correlation was conducted with 
the ‘xcorr’ function from ‘warbleR’, using Pearson product-moment coefficient to measure 
signal similarity. Both dynamic time warping and cross-correlation were conducted using 
a 300-point fast-Fourier transformation window length (6.8 ms time resolution, 147 Hz 
frequency resolution), and 90% window overlap with a ‘hanning’ window function. The R 
packages ‘tuneR’ (Ligges, Krey, Mersmann, and Schnackenberg 2014), and ‘Seewave’ (Sueur, 
Aubin, and Simonis 2008) were used for importing sound files in the R environment and 
generating spectrograms, respectively.

The effect of compression on acoustic structure metrics can be described in terms of 
the agreement between the same metrics measured in original uncompressed files and 
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BIOACOUSTICS   7

compressed files. Several statistical tools have been used to evaluate measurement agree-
ment. However, the Bland-Altman analysis (Bland and Altman 1986) is generally regarded 
as the most reliable quantitative estimation for measurement agreement (Hanneman 2010). 
Under this analysis the accuracy is estimated as the overall mean difference between its 
measurements and those of an established method (so-called ‘method bias’). In addition, 
the variation around mean differences (e.g. confidence intervals) provides information 
about the precision of the method. In our case the bias on the measurements derived from 
compressed sound files was calculated as the difference between the acoustic parameters of 
original uncompressed files and those of compressed files. The precision was estimated as the 
95% confidence intervals (1.96 * SD, ‘limits of agreement’ in Bland-Altman terminology).

The significance of a method bias should be interpreted relative to the expected meas-
urement error and the magnitude of the differences that have been detected in previous 
studies for the given acoustic parameters (Hanneman 2010). Biases within the expected 
error range should be dismissed as these may arise as an artefact of measurement uncer-
tainty. On the other hand, if bias surpasses commonly reported differences, such deviations 
could impair our ability to detect significant effects. In our case, the error of a frequency 
measurement is a function of the precision in the frequency domain, which is defined by 
the ratio of the sampling rate to the window length (Beecher 1988). For a 44.1 kHz sound 
file with a 512-point window length (as in this study) the associated error is 86 Hz. Variation 
in song frequencies between populations from different habitats are usually reported when 
evaluating predictions of the acoustic adaption hypothesis (i.e. the degree to which the 
structure of animal sounds has evolved to optimize transmission in particular habitats; 
Morton 1975) and thus provide an a priori threshold for unacceptable frequency biases 
or confidence intervals. The most recent review on this topic gives average effect sizes for 
frequency shifts due to habitat selection (Boncoraglio and Saino 2007), and reported the 
lowest average effect size of 160 Hz (Table 1, maximum frequency). We used this value as a 
conservative threshold for detecting frequency biases of possible concern. Note that the lack 
of similar estimates for non-frequency parameters (to the best of our knowledge) prevents 
the use of bias and precision thresholds for skewness, spectral entropy, modulation index 
and pairwise similarity measures such as dynamic time warping and cross-correlation. 
Hence, bias and precision for these parameters are shown as a percentage of the overall 
observed parameter range for the original uncompressed files to provide some estimate of 
the effect of compression.

We also estimated the agreement between measurements on uncompressed and com-
pressed files, using the intraclass correlation coefficient. This test evaluates the degree to 
which measurements on uncompressed and compressed sound files provide the same 
results (i.e. repeatability). The test statistic provides information on measurement agreement  
(0 ~ no agreement, 1 ~ total agreement) similar to the confidence intervals of the Bland-
Altman bias, although as mentioned above, the latter provides a more robust estimator of 
method agreement (Bland and Altman 1986; Müller and Büttner 1994; Hanneman 2010). 
Nevertheless, we included repeatability as a complementary measure of agreement given 
that it can be directly compared across methods with different units (or unitless), includ-
ing pairwise similarity measures. Repeatability was measured using the R package ‘ICC’ 
(Wolak et al. 2012).

To examine the effects of background noise, we built an R routine to adjust the 
background noise level on (uncompressed) sound files using the R package ‘seewave’ 
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8   M. ARAYA-SALAS ET AL.

(Sueur, Aubin, and Simonis 2008). The routine gradually added uniform noise (i.e. 
uniformly distributed across frequencies, aka. ‘white noise’) to the signals until reach-
ing a target SNR (± 0.1 dB). Other noise types (with different power spectrum) might 
be a better approximation to some natural acoustic environments, particularly pink 
noise in which the power spectrum decades in logarithmic scale. However, pink noise 
would not affect all frequencies bands equally. Hence, the effect of noise would also 
depend on the signal frequency range and frequency spectrum, making inference across 
different signals difficult. We ran this routine on the subset of signals with the highest 
SNR (SNR > 10 dB). Acoustic parameters and pairwise similarity measures were then 
calculated on noise-adjusted signals at 10 SNR levels (from 1 to 10 dB; Figure 1). Again, 
dynamic time warping and cross-correlation were calculated only on the subset of 
long-billed hermit songs. Mean bias, 95% confidence intervals, and repeatability were 
estimated at each SNR level compared to the highest SNR level (SNR = 10 dB). All 
analyses for non-pairwise similarity measures were run on the complete data-set and 
on the subset of long and short duration signals. Pairwise similarity measures were not 
split by duration categories as they were only conducted on long-billed hermit songs, 
which show little variation in song length.

Results

Compression

The mean bias of all frequency parameters from compressed files remained within the range 
of the frequency measurement error (86 Hz) regardless of the encoder or encoding method 
(n = 2642 signals, Figure 3). The most biased parameter (peak frequency) showed a mean 
positive deviation of only 14 Hz. However, 95% confidence intervals were much broader for 
most measurements, surpassing the a priori defined acceptable difference (160 Hz) in 4 of 
the 9 frequency parameters: minimum dominant frequency, maximum dominant frequency, 
peak frequency and frequency range (Figure 3). Interestingly, CBR produced narrower con-
fidence intervals than VBR for LAME encoded files (Figure 3). Modulation index, skewness 
and spectral entropy showed a similar pattern; low mean biases but higher variation (par-
ticularly modulation index), and within those, greater variation on VBR-LAME encoded 
files (Figure 4). Dynamic time warping showed little bias but significant variation for all four 
treatments (~13% of the overall range of dynamic time warping distances). Compression 
produced slightly negatively biased cross-correlation coefficients (~−1.5% of the overall 
range) for most treatments except for VBR-LAME compression, which showed the largest 
bias (−3.7%) and also considerable variation. Long signals seem to be more affected by 
compression than short signals, except for modulation index (Figures 3 and 4).

Most acoustic parameters (both frequency and non-frequency parameters) produced 
high repeatability values despite compression, although VBR-LAME encoded files showed 
lower repeatability, particularly for modulation index, peak frequency and frequency range 
(Figure 5). Dynamic time warping distances were less repeatable than cross-correlation (or 
most acoustic parameters) regardless of encoder or encoding method (n = 242 independ-
ent signal pairs, Figure 5). In both pairwise similarity methods VBR-LAME encoded files 
showed the lowest repeatability. Again, except for modulation index, long signals are more 
affected by compression than short signals (Figures 3 and 4).
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BIOACOUSTICS   9

Background noise

Frequency parameter biases remained low across the SNR range, except for 3rd quartile and 
interquartile frequencies at a SNR below 2 dB (n = 1689 signals for all parameters, Figure 6).  
However, confidence intervals extended above the acceptable threshold with lower SNR 
(i.e. precision decreased with higher background noise) for several frequency parameters: 
mean frequency, mean dominant frequency, minimum dominant frequency, 1st quartile, 
3rd quartile and interquartile frequencies. Some of these parameters displayed decreased 
precision even at intermediate background noise levels. The remaining frequency param-
eters showed high levels of variation (above the defined threshold) across the entire SNR 
range (Figure 6). From the non-frequency acoustic parameters, spectral entropy showed 
both important positive bias and high variation at low SNR values (Figure 7). Skewness 
showed a similar pattern, but to a much smaller extent compared to its overall range. 
Modulation index remains unbiased but with high variation across the entire SNR range. 

Figure 3. Bland-altman bias and 95% confidence intervals for frequency parameters on mp3 compressed 
sound files compared to the same measurements on uncompressed files (all signals n = 2642; short signals 
n = 659, long signals n = 659).
Notes: Four biases are shown for each parameter, which correspond to each of the encoders (LaME and Fraunhofer) under 
the two encoding methods (cBR: constant bit rate, VBR: variable bit rate). the measurement error range is highlighted in 
light green. the light red area highlights values of possible concern according to a predefined threshold. Parameter names 
and descriptions are detailed in table 1.
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10   M. ARAYA-SALAS ET AL.

Both pairwise similarity methods showed little biases due to increasing background noise, 
although confidence intervals were much broader for dynamic time warping across the SNR 
range (n = 214 independent signal pairs, Figure 7). Signal duration had no apparent effect 
on parameter bias although showed a small effect on measurement precision. Minimum/
maximum frequency and frequency range show slightly wider confidence intervals for 
long signals while confidence intervals were wider in short signals for peak frequency and 
amplitude distribution parameters.

The repeatability of acoustic parameters remained high across the SNR range, except 
for spectral entropy, which was clearly affected at SNR lower than four (Figure 8). Cross-
correlation seemed to be highly repeatable regardless of the background noise level. 
Dynamic time warping was more affected by background noise, with low repeatability 

Figure 4.  Bland-altman bias and 95% confidence intervals for non-frequency parameters (modindx, 
skewness, sp.entropy; all signals n = 2642; short and long signals n = 659 each) and acoustic similarity 
methods (DtW.dist, cross.corr; n = 242 signal pairs; not split by duration due to little variation across 
long-billed hermit songs) on mp3 compressed sound files compared to the same measurements on 
uncompressed files.
Notes: two parameters included in Figure 1 (mean.freq and peak.freq) are also shown to facilitate comparison to biases in 
frequency parameters. Four biases are shown for each parameter, which correspond to each of the encoders (LaME and 
Fraunhofer) under the two encoding methods (cBR: constant bit rate, VBR: variable bit rate). Biases are presented as the 
percentage of the overall parameter range in uncompressed files.
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BIOACOUSTICS   11

and high variation in repeatability across the SNR range (Figure 8). Signal duration had 
little effect on repeatability. Only spectral entropy, modulation index and frequency range 
presented slight differences between the two duration categories, although with important 
overlap between repeatability estimations.

Discussion

We evaluated the extent to which sound file compression and increasing levels of background 
noise affect the performance of the most common measurements for quantifying acoustic 
signal structure. Overall, the accuracy of mp3 compression remained high across the differ-
ent mp3 encoding algorithms, although low precision (i.e. broad confidence intervals) was 

Figure 5. Repeatability and 95% confidence intervals of acoustic parameters (all signals n = 2642; short 
signals [duration  <  0.09 s] n  =  659, long signals [duration  >  0.18 s] n  =  659) and pairwise similarity 
measures (DtW.dist and cross.corr, n = 242 signal pairs; not split by duration due to little variation across 
long-billed hermit songs) measured on mp3 compressed sound files and uncompressed files.
Notes: Parameter names and descriptions are detailed in table 1. Repeatability was estimated using the intraclass correlation 
coefficient (icc). Four repeatability values are shown for each parameter, which correspond to each of the encoders (LaME 
and Fraunhofer) under the two encoding methods (cBR: constant bit rate, VBR: variable bit rate). Note that most parameters 
showed very narrow confidence intervals that do not stand over mean value symbols. Parameter names and descriptions 
are detailed in table 1.
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12   M. ARAYA-SALAS ET AL.

found in four out of nine frequency measurements on compressed files (Figures 3 and 4). 
Cross-correlation seemed to be slightly negatively biased by file compression (i.e. decreased 
similarity when comparing compressed files). Dynamic time warping produced less biased 
similarity measures, but its precision was much more affected by mp3 compression than 
was the precision of cross-correlation, particularly for VBR-LAME encoded files (Figure 
4). These patterns were confirmed by analyses of repeatability, in which measurements on 
VBR-LAME encoded files were consistently less repeatable, and dynamic time warping 
showed the lowest repeatability of all parameters and similarity methods.

Effects of background noise were more heterogeneous. Biases remain low for most 
parameters (Figures 6 and 7), except for 3rd quartile frequency and interquartile range, 
in which a high bias was found at high background noise levels (Figure 6). These results 
are in accordance with previous studies that have shown unbiased automatic frequency 
measures in noisy signals (Brumm et al. 2017; Ríos-Chelén et al. 2017). In a few cases, 
precision decreased with increasing background noise, but for most parameters precision 
was low (i.e. broad confidence intervals) regardless of the background noise level (Figure 6).  
In terms of repeatability, spectral entropy and peak frequency were most affected by back-
ground noise, particularly at low SNR levels. Both cross-correlation and dynamic time 
warping remained unbiased across background noise levels, although the precision of the 
latter was significantly more affected (Figures 6 and 7). Recent studies have shown that 
measuring frequency range using an amplitude threshold on a power spectrum is not prone 
to bias by noise (Brumm et al. 2017; Ríos-Chelén et al. 2017). Our results support the use 
of amplitude thresholds to obtained unbiased measures of frequency ranges when dealing 
with signals in variable noise levels. Nonetheless, results (particularly the lack of significant 
differences) should be interpreted cautiously given the decrease in precision.

Figure 6. Bland-altman bias and 95% confidence intervals for frequency parameters across the range 
of signalto-noise ratio values for short (duration < 0.09 s; n = 244) and long signals (duration > 0.18 s; 
n = 244).
Notes: Bias and confidence intervals for the complete data-set (n = 1689 signals) are not shown as these closely resemble 
those of the subsets included. the light red area highlights values of possible concern according to a predefined threshold and 
the light green area corresponds to the measurement error range. Parameter names and descriptions are detailed in table 1.
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BIOACOUSTICS   13

Overall, acoustic parameters calculated across the entire signal (e.g. mean dominant 
frequency, spectral entropy) showed better precision than parameters representing a sin-
gle extreme value (e.g. maximum frequency, peak frequency) or parameters derived from 
those (e.g. dominant frequency range, modulation index). This effect seems to be stronger 
in long duration signals. In general, this applied to both compression (particularly using 
the VBR-LAME encoder) and background noise analyses. Dominant frequency range and 
modulation index have already been found to be affected by compression (Medina-García 
et al. 2015). The single exception was spectral entropy, which was strongly affected by back-
ground noise (entropy increases with increasing noise), likely because higher background 
noise levels would tend to homogenize amplitude values across the signal.

The lack of precision on parameters representing single extreme values could also explain 
the strong effect of both compression and background noise on dynamic time warping 
distances. Frequency contours are sequences of single frequency values. Hence, the lack of 
precision on each measurement may be ‘accumulated’, resulting in a stronger effect on the 
overall contour shape. Cross-correlation was robust to both compression and background 
noise. This matches with previous findings in which background noise levels showed small 
effects on cross-correlation performance (Cortopassi and Bradbury 2000).

Figure 7.  Bland-altman bias and 95% confidence intervals for non-frequency parameters (skewness, 
sp.entropy, mod.indx; short and long signals n = 422 signals each) and pairwise similarity methods (cross.
corr and DtW.dist; n = 214 signal pairs) across the range of signal-to-noise ratio values.
Notes: a parameter included in Figure 4 (iQR.freq) is also shown to facilitate comparison to biases in frequency parameters. 
Bias and confidence intervals for the complete data-set of non-frequency parameters (n = 1689 signals) is not shown as it 
closely resembles those of the subsets included. Pairwise similarity measures were not split by duration due to little variation 
across long-billed hermit songs. Parameter names and descriptions are detailed in table 1. Biases are presented as percentage 
of the overall parameter range in uncompressed files.
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14   M. ARAYA-SALAS ET AL.

Several conclusions can be drawn from our findings. First, mp3 compression (at least at 
128 kbps or higher) does not generate a systematic deviation, on average, in the most com-
monly used acoustic measurements. However, single extreme value parameters or metrics 
derived from them appear to be less precise after file compression, particularly when using 
VBR-LAME encoded sound files. Second, cross-correlation should be chosen over dynamic 
time warping when comparing signals from mp3 compressed files or when recordings differ 
substantially with regard to background noise. Third, high background noise biases most 
acoustic parameters derived from the distribution of energy in the signals (e.g. interquartile 
range, spectral entropy) which can lead to spurious results when noise levels differ among 
treatments (particularly if noisy signals show higher entropy, 3rd quartile frequencies, and/
or interquartile ranges). Finally, in general, background noise affects the precision of acoustic 
parameters and dynamic time warping, but has a smaller effect on cross-correlation.

These conclusions translate into specific recommendations and guidelines for dealing 
with mp3 compressed files or acoustic signals and/or those with variable levels of back-
ground noise. When aiming to quantify signal structure, uncompressed files are preferred 
over files that have undergone mp3 compression. VBR-LAME encoding should be avoided 
if file compression is required. Parameters measured across entire signals would be more 
reliable, whereas single-value acoustic parameters and metrics derived from them should be 
avoided (e.g. ‘frequency excursion index’, Podos et al. 2016). Spurious statistical differences 

Figure 8.  Repeatability and 95% confidence intervals of acoustic parameters (short and long signals 
n = 422 signals each) and pairwise similarity measures (cross.corr and DtW.dist n = 214 signal pairs) at 
different levels of signal-to-noise ratio.
Notes: Repeatability was estimated using the intraclass correlation coefficient (icc). Bias and confidence intervals for the 
complete data-set of acoustic parameters (n = 1689 signals) are not shown as these closely resemble those of the subsets 
included. Pairwise similarity measures were not split by duration due to little variation across long-billed hermit songs. 
Parameter names and descriptions are detailed in table 1. Repeatability of ‘Q75.freq’ and ‘max.dom’ (not shown) closely 
resembled those of ‘Q25.freq’ and ‘min.dom’, respectively. Most parameters showed very narrow confidence intervals that 
do not stand over mean value symbols.
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BIOACOUSTICS   15

are unlikely to arise as a result of compression, as acoustic measurements showed small 
biases. However, spurious differences could result when energy distribution parameters are 
used to characterize signals if background noise levels co-vary with a predictor factor (e.g. 
when looking at group-level acoustic signatures and groups inhabit areas with different 
background noise levels).

The low measurement precision generated by compression and background noise could 
result in failing to detect actual biological differences. Furthermore, the use of parameters 
prone to be biased by noise (as the energy distribution parameters) to compare signals with 
different noise levels could generate spurious statistical differences. New analytical tools 
allow users to precisely measure background noise levels for each signal (e.g. signal-to-noise 
ratio, Araya-Salas and Smith-Vidaurre 2017). This parameter can be used to statistically 
control for the effect of noise, to directly evaluate differences among treatments, or to 
identify the parameters most strongly affected by noise (and remove them). Any of these 
approaches will help to focus the analysis on the actual acoustic differences of the groups 
being compared, strengthen the validity of the results. The negative effects of compression 
and background noise could be less problematic when conducting comparing acoustic 
parameters across species, as the differences are usually stronger than at the within species 
level (e.g. Hall et al. 2013).

The study of animal acoustic signals remains an important tool for many fields in bio-
logical research. The rapid diversification of recording devices, analytical approaches and 
bioacoustic repositories can pose important challenges for achieving robust studies. Sound 
file compression and variation in background noise are two putative confounding factors 
for acoustic analysis, although little attention has been devoted to their respective effects on 
acoustic metrics. We have shown that mp3 compression and background noise can indeed 
influence parameters commonly used to quantify acoustic signals. However, careful con-
sideration of these parameters, or the use of statistical tools to directly assess their effect, 
can help mitigate some negative effects of compression and background noise. It is also 
likely that the magnitude of some of the observed effects is related to the signal structure 
itself (e.g. precision of dynamic time warping on pure tone signals could be less affected by 
compression). More studies will be warranted to reach a more detailed understanding of 
the effects of these factors in acoustic signal quantification.
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