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Traits that exhibit differences between the sexes have been of special interest in
the study of phenotypic evolution. Classic hypotheses explain sexually
dimorphic traits via intra-sexual competition and mate selection, yet natural
selection may also act differentially on the sexes to produce dimorphism.
Natural selection can act either through physiological and ecological con-
straints on one of the sexes, or by modulating the strength of sexual/social
selection. This predicts an association between the degree of dimorphism
and variation in ecological environments. Here, we characterize the variation
in hummingbird dimorphism across ecological gradients using rich databases
of morphology, colouration and song.We show that morphological dimorph-
ism decreases with elevation in the understorey and increases with elevation
in mixed habitats, that dichromatism increases at high altitudes in open and
mixed habitats, and that song is less complex in mixed habitats. Our results
are consistent with flight constraints, lower predation pressure at high
elevations and with habitat effects on song transmission. We also show that
dichromatism and song complexity are positively associated, while tail
dimorphism and song complexity are negatively associated. Our results
suggest that key ecological factors shape sexually dimorphic traits, and that
different communication modalities do not always evolve in tandem.
1. Introduction
Evolutionary divergence of phenotypic traits and social signals is a proposed
mechanism by which populations differentiate and new species are formed
[1–3]. Traits that exhibit differences between sexes have been of special interest
in studies of speciation via sexual selection and have been used as indicators of
its intensity [4–6]. Nonetheless, the evolution of sexual differences can also be
the product of natural selection, or of an interaction between the two [4,7]. Con-
sequently, though the evolution of sexually dimorphic traits is the result of
differential forces acting individually on either sex, the resulting difference pro-
vides valuable insight into the forces shaping trait evolution. One captivating
example of sexually dimorphic traits evolving under both sexual and natural
selection are avian bills shaped by plant–pollinator coevolution [8], while
simultaneously used in physical combat as intrasexually selected weapons [7,9].

In birds, elevation and habitat structure are ecological factors proposed to be
drivers of trait variation through natural selection, which in turn may either
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promote sexual dimorphism or restrain trait divergence
between sexes due to sexual selection. Examples of these
potential effects include physiological and biomechanical con-
straints on flight performance [10,11] due to a reduction in
oxygen availability and atmospheric pressure with elevation,
which affect aerial agonistic [12] and display manoeuvres
[13], as well as the potential cost of ornaments such as
elongated tails [14]. Habitats may affect sexual dimorphism
in feeding apparati when there is differential resource distri-
bution leading to divergence in foraging strategies [15] and
food niche partitioning between sexes [8,16]. Habitat structure
may also affect how songs are transmitted and perceived,
yielding different optima for acoustic broadcasting [17–20].
Additionally, species richness and composition of assem-
blages vary with elevation [21–23], affecting inter- and
intra-sexual acoustic competition [24–26] and visual com-
munication [27,28]. Habitat structure also affects visual
signals through changes in light availability and viewing geo-
metry [29,30], whichmay alter how ornaments—like colourful
plumage and elongated tails—are perceived. Given what is
known about the effects of altitude and habitat structure on
sexually dimorphic traits, it is important to evaluate how the
interplay between these two environmental factors may
affect the evolution of these traits (e.g. open habitats at high
altitudes versus open habitats at low altitudes).

In addition, covariation of sexually dimorphic traits can
help us understand the extent to which the same selective
regimes may shape dimorphism across the main sensory
modalities (e.g. acoustic and visual) that animals use to com-
municate [31,32]. Sexually dimorphic traits might also be
affected by other selective pressures that covary with the
environment [12,19,33]; for example, a mating preference
for a conspicuous signal might differ between different light
conditions [34]. Hence, by characterizing the association
among sexually divergent traits and the way these associ-
ations change along environmental gradients, we can make
inferences about the evolutionary mechanisms shaping
sexual dimorphism.

Classic ideas suggest a trade-off between multiple signals,
predicting a negative association between different sensory
modalities—the transference hypothesis [35,36]. Alterna-
tively, individuals may communicate different messages
relying on each signal modality, in which case no association
among traits is expected—the multiple message hypothesis
[37]. Additionally, the redundant signal hypothesis states
that assessing multiple signals of quality simultaneously is
more reliable than using only one, predicting a positive corre-
lation among signals [32,38]. Finally, the unreliable signals
hypothesis states that many secondary sexual characters are
dissociated from the individual condition, and thus are not
expected to be selected for [39]. To differentiate these
contrasting hypotheses, it is necessary to incorporate infor-
mation from all signalling modalities to determine the
existence and directionality of coevolution among sexually
dimorphic traits.

Within birds, the hummingbirds (Trochilidae) are a mor-
phologically, colourfully and acoustically diverse family,
which are monophyletic [40], species-rich, and occur in
many different environments across the Americas. In this
family, several morphological and locomotion-related traits
have been extensively studied, showing that wing, bill and
tail traits are involved in intra- and inter-sexual interactions
[14,41–43], but are also under natural selection for access to
resources through interference and exploitative competition
[8,9,14,44]. Hummingbird coloration is highly diverse and
has been associated with both sexual selection for mate attrac-
tion [45–47], selection for social dominance [27,48,49] and
camouflage [45,46]; similarly, hummingbirds also display a
wide range of diversity in song structure [50,51].

Here, we use hummingbirds to evaluate if ecological
gradients shape morphological, visual and acoustic sexual
dimorphisms, often attributed to sexual selection, and if
these traits are correlated or evolve independently. We
predict morphological dimorphism (MD) to be reduced in
open habitats because of restricted resource partitioning
between sexes, and thus reduced divergence of foraging strat-
egies, due to lower resources [8] and at high elevations, as
potentially costly morphological modifications (e.g. involved
in expensive displays) would compromise the already tight
energy budget at extreme conditions [10,52]. A particular
MD presumed to be mostly under inter-sexual selection, tail
length, should decrease with altitude, at any habitat structure,
given augmented flight constraints, and in fact, high-elevation
hummingbirds have been shown to have less elaborated tails
[10,14]. Sexual dichromatism should decrease at higher
elevations and open habitats, due to lower predation pressure
on both sexes [53] and higher chance for visibility [29,33],
which could result in both males and females becoming simi-
larly colourful (i.e. monochromatic). We expect that song
would be affected by elevation through the changes in species
richness and acoustic competition [17,23], hence, species at
mid-elevations, where species richness increases, should have
lower song complexity than those in the two extremes given
competition in the acoustic space [21].We expectmore complex
songs in open environments because closed environments
should negatively affect male song complexity, by increasing
signal degradation as a result of higher vegetation density
[18,20]. Finally, we expect these traits to negatively correlate
under the transference hypothesis, because of high metabolic
costs involved in the production and use of secondary sexual
traits [35,36]. Nonetheless, because the costs of these traits
may vary along elevational and habitat structure gradients,
these associations could vary as well.
2. Methods
(a) Sexually dimorphic traits
(i) Morphological and tail dimorphism
We quantified dimorphism on 14 measurements taken from field
captures including bill, wing and tail measurements (electronic
supplementary material, table S1). We measured only adult indi-
viduals, of both sexes where available, for a total of 109 species
with complete data for both sexes (three or more per sex) and
included in the molecular phylogeny [40]. We scaled these 14
measurements to unit variance and performed a principal com-
ponent analysis (PCA) keeping all PC axes (electronic
supplementary material, table S1). We included body mass in
the PCA to characterize sexual size differences that have been
shown to be important for inter- and intra-specific interactions
[54]. We then calculated MD as the Euclidean distance between
males and females in the multidimensional space defined by
the 14 PCs for each species (figure 1, electronic supplementary
material, figure S1). We confirmed that this approach was appro-
priate to infer dimorphism in multidimensional space using
simulations, and that it was consistent with weighting each PC
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Figure 1. Scaled sexually dimorphic traits in hummingbirds. Tail length is included in MD. All traits were converted to percentages. On the left, the hummingbird
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laemus, bees: Tilmatura dupontii, emeralds: Microchera cupreiceps. Illustrations by Birds of the World | Cornell Lab of Ornithology. (Online version in colour.)
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by its explained variance (see electronic supplementary material
for details). To identify cases of male- or female-biased MD (e.g.
one sex being predominantly larger than the other), we com-
puted the log10 difference between female and male values for
each measurement and summed all differences for each species.
This showed that MD was mostly male-biased (i.e. males larger;
107 species, 91.5%) while only 10 species (8.5%) were female-
biased (electronic supplementary material, figure S2).

Next, we calculated tail length dimorphism (TLD) using the
database from Clark [14], which includes the length for all rec-
trices for 332 species. Additionally, we used the Colwell [54]
body mass database with additional values for missing species
from various sources ([55–57]; D Plazas 2021, unpublished data;
A Rico-Guevara 2021, unpublished data) for 244 species with
weight data for both sexes. We then corrected for size by dividing
average tail length of each sex by the square root of the corre-
sponding average body mass of each sex, given that tail length
allometry has been shown to be 0.5 in hummingbirds [14], and cal-
culated tail dimorphism by subtracting the female value from the
male value.We found that TLD using only the longest male rectrix
was highly correlated with the TLD sum of all rectrices (ρ = 0.91,
p < 0.001), sowe calculated TLD of the longestmale rectrix for sim-
plicity (figure 1, electronic supplementary material, figure S1).
This agrees with Clark [14], which states that typically just one
tail-feather elongates in hummingbirds.
(ii) Sexual dichromatism
We used a reflectance dataset for hummingbirds that contains 237
species (two or more per sex) with colour data for five plumage
patches [46]. For each of these species, we calculated the colour
distance between sexes using the receptor-noise visual model
[58,59]. This model quantifies the relative stimulation of each of
the four cones in the avian visual system, corresponding to UV
or violet, short, medium and long-sensitive wavelengths (i.e.
quantum catches). Then, the model adds the effect of the quantum
catches together while considering cone density and signal-to-
noise ratio in the signal processing. We kept distances in the chro-
matic portion of the spectrum only [59,60]. Finally, we averaged
the colour distances among patches to obtain a general measure
of sexual dichromatism for each species (figure 1). All calculations
were made in the R package pavo [61,62].
(iii) Song complexity
We focused on male song output since it has become a common
indicator for the intensity of sexual selection [3]. Female song is
rare in hummingbirds and has been observed only in a few
species [35,63]. We collected recordings for 262 species from
bioacoustics libraries and personal collections (see electronic sup-
plementary material for sources). We excluded three species in
which song has been reported as absent [35]. Only recordings
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with at least two songs were analysed. A song was defined as a
broadcast vocalization uttered repeatedly from a fixed position
and that showed a regular pattern in the time spacing and/or
the sequence of elements. Song elements, defined as continuous
power spectral density traces in the spectrogram, were categor-
ized within each recording based on visual inspection. A single
acoustic space for all species was calculated as the first two prin-
cipal components from a PCA on 26 acoustic features measured
on elements, using the R package warbleR [64]. The acoustic fea-
tures quantify the distribution of energy in the time and
frequency domain, and the variation in dominant frequency
across time (see electronic supplementary material, methods for
details). Song acoustic space was quantified as the minimum
spanning tree connecting all elements of the song in the overall
acoustic space, using the R package PhenotypeSpace [65]. Four
parameters describing song complexity were calculated for
each song: element types, acoustic space, element transition
diversity and between-song variation (electronic supplementary
material, methods). To obtain a single measure of song complex-
ity, we employed a PCA on all scaled parameters. PC1 (62.9% of
total variance) loaded strongly and negatively on all properties
except for element transition diversity, which loaded strongly
on PC2 (8.8%). We kept PC1 as a measure of song complexity
(figure 1; electronic supplementary material, table S2).

(iv) Altitude and habitat structure
We used the Rangel et al. [66] database, which contains values of
minimum, medium and maximum altitude for 302 species of
hummingbirds. We evaluated the correlation among these
metrics and found that both minimum and maximum altitude
were highly correlated with medium altitude (ρ = 0.91, ρ = 0.95;
respectively), so we only kept medium altitude for further
analyses. For habitat structure, we used the Parker et al. [67] data-
base and gathered the type of habitat structure in which each
species occurs based on the foraging stratum, grouped under
three categories: understorey, mixed (i.e. species moving between
shaded areas and gaps) and open (i.e. species which mostly use
gaps and canopy). This approach does not recognize species that
set courtship territories in strata different from their foraging
stratum, but this information is lacking for most hummingbird
species.

(b) Comparative analyses
(i) Effect of altitude and habitat
To evaluate the effect of altitude and habitat structure on each
dimorphic trait, we employed Bayesian phylogenetic mixed-
effect models (BPMMs) in the R package MCMCglmm [68,69].
For each dimorphic trait as response variable, we ran a model
with altitude, habitat structure and the interaction between the
two as predictors. We selected the understorey as baseline habi-
tat; thus, all the comparisons are relative to the understorey to
aid interpretation. The baseline habitat was switched to evaluate
if the relationship with altitude within each habitat was signifi-
cantly different from zero as post hoc analyses. All continuous
variables were scaled to unit variance prior to entering the
models. To account for phylogenetic non-independence and
uncertainty, we randomly sampled 100 phylogenetic trees from
the posterior distribution [40] and ran a model with each tree
as random effect, we then pooled together the posterior distri-
butions of each parameter from all runs and computed the
median and high-density interval (HDI) of the pooled posterior.
We used flat, uninformative priors for the residuals and random
effects covariance matrices. Each model was run for 500 000
generations, sampling every 300 generations with a burn-in of
10 000. We evaluated this configuration for convergence with a
Gelman–Rubin diagnostic which was kept under 1.1 [70]. Each
set of models included as many species as possible with
phylogenetic, altitude and habitat structure data: 224 species
for dichromatism, 213 for song complexity, 107 for MD
(figure 1) and 161 for TLD (figure S1).

(ii) Correlation between traits
To evaluate the relationship between dimorphic traits, we ran
BPMMs with all the possible pairwise combinations of traits set-
ting one as response and the other as predictor. For the MD and
TLD pair, since MD included tail length measurements, we recal-
culated MD in the same fashion but removed tail length to avoid
circularity and to test for correlation between dimorphism of all
other measurements and TLD. Furthermore, to test if associ-
ations between traits were dependent on altitude or existed
only in a particular habitat type, we included altitude and habitat
structure as interactions with the predictor in each model. For
each pair of traits, we included as many species as possible;
106 for dichromatism and MD, 191 for dichromatism and song
complexity, 143 for dichromatism and TLD, 96 for MD and
song complexity, 147 for TLD and song complexity and 74 for
MD and TLD.
3. Results
(a) Ecological effects on dimorphic traits
MD significantly decreased with elevation in the understorey
(figure 2; posterior median =−0.59, 95% HDI: −1.09 to −0.09;
electronic supplementarymaterial, table S3), in mixed habitats
the relationship between MD and elevation was positive and
significantly different from the understorey but not signifi-
cantly different from zero, while in open habitats the
relationship with MD was not significantly different than
that of the understorey or from zero. To determine if the MD
association was attributable to either body size or wing
length, the two most often used size-related traits, we ran
complementary lambda-estimated PGLS models between
the log10 sex differences in body size, wing length and
folded wing length, and the same predictors as BPMMs. We
found only one significant effect of decreased wing length
dimorphism with increased elevation, which is consistent
with the general trend but did not fully account for the results
obtained in the MD BPMM (electronic supplementary
material, table S4).

Dichromatism showed significant differences among
elevation and habitat combinations (electronic supplementary
material, table S3). Dichromatism increased with altitude in
open and mixed habitats and these relationships were signifi-
cantly different from that of the understorey, but not
significantly different from zero. In the understorey, the
relationship between dichromatism and elevation was nega-
tive and marginally significant (figure 2). To rule out that
the associations with dichromatism were produced mainly
by the conspicuous coloration of the crown or gorget (i.e. the
most dichromatic patches), we ran five additional BPMMs
using only the dichromatism of each patch as response vari-
able (electronic supplementary material, table S5). These
models showed no significant associations for the crown or
gorget, indicating that the association with altitude and habi-
tat structure is not attributable to the most dichromatic
patches. To determine if dichromatism at high altitudes
could be reduced because of females becoming more colour-
ful, we took the interpatch colour span data for each sex
from [46] and found that at high altitudes, regardless of habi-
tat, dichromatism derives mostly from males with complex
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Figure 2. Relationships between altitude and habitat structure with hummingbird dimorphic traits. (a) Scatterplots showing the relationship between altitude and
each dimorphic trait. Each dot represents a species. Solid lines represent significant effects of elevation and habitat structure (marginally significant in dichromatism),
dashed lines indicate relationships significantly different from the understorey, dot-dash lines indicate non-significant associations. Colours represent each type of
habitat structure. Vertical and horizontal axes are standardized. (b) Model coefficients estimated by BPMMs. Dots indicate posterior median and bars show 95% HDI.
Grey segments indicate non-significant effects, and black segments indicate significant effects. Segments on the left of dotted lines indicate negative effects and
segments on the right indicate positive effects. (Online version in colour.)
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and colourful plumage, rather than females (electronic sup-
plementary material, figure S3), and that dichromatism is
highly correlated with male colour complexity (ρ = 0.70),
while weakly correlated with female colour complexity (ρ =
0.21). We also found that most dichromatic species show
colourful males and that colourful monochromatism is rare
and unrelated to elevation or a particular habitat type (elec-
tronic supplementary material, figure S3). Song complexity
was significantly lower in mixed habitats compared to the
understorey when altitude is average (approx. 1500 m.a.s.l.).
Conversely, TLD did not show significant relationships with
altitude or habitat structure, nor were the relationships differ-
ent among habitats (figure 2b; electronic supplementary
material, table S3).
(b) Associations among dimorphic traits
We found a significant positive relationship between dichro-
matism and song complexity (figure 3a, electronic
supplementary material, figure S4; posterior median = 0.24,
95% HDI: 0.02–0.45; electronic supplementary material,
table S6). This association remained positive even after
removing the two most extreme points in the song complex-
ity distribution (electronic supplementary material, table S6),
though with a marginal loss of significance (posterior
median = 0.27, 95% HDI: −0.01–0.56). When considering the
effects of altitude and habitat structure, the significance of
the relationship between dichromatism and song complexity
was lost, but remained positive for all habitats, hence, the
association between these traits was not limited to a specific
covariate. To evaluate if the most dichromatic patches were
responsible for this association, we ran five more BPMMs
with the dichromatism of each patch as response and song
complexity as predictor. These models showed strong signifi-
cant associations in the crown and gorget (figure 3b,c), with a
weaker association in the mantle (electronic supplementary
material, table S7), implying that the most dichromatic
patches are indeed the ones responsible for the association
with song complexity. Additionally, a weak negative associ-
ation was found between TLD and song complexity in the
understorey, and this relationship became more negative at
higher elevations (posterior median =−0.15, 95% CI: −0.29
to −0.02; electronic supplementary material, figure S4 and
table S6), suggesting a potential trade-off between signalling
modalities. We also found positive correlations between TLD
and MD, especially in mixed and open habitats (electronic
supplementary material, table S6). All other comparisons
were non-significant with and without the interactions
(electronic supplementary material, table S6 and figure S4).
4. Discussion
We show that variation in sexually dimorphic traits of multiple
signalling modalities is partly associated with elevation gradi-
ents and habitat structure, supporting the idea that these
dimorphisms are the result of a complex balance between natu-
ral and sexual selection. We also found that, in some cases but
not others, altitude and habitat structure influence covariance
patterns between dimorphic traits from different signalling
modalities. For example, dichromatism and song complexity
were positively associated, unaffected by elevation/habitat,
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suggesting that communication signals in hummingbirds
could deliver complementary information if these are sexually
selected. Conversely, tail length and song complexity are inver-
sely correlated, with a steeper negative association at higher
elevations in the understorey. Our results suggest that sexual
dimorphisms are associated with natural selection, and that
some visual traits correlate with acoustic traits, consistent
with a redundant signal hypothesis; while others show a
trade-off, in line with the transference hypothesis.

Altitude and habitat structure have been found to affect
sexually dimorphic traits in other bird clades with contrasting
results. For example, dichromatism in finches decreases with
elevation [71,72], which was attributed to three factors: (i)
colder nesting temperatures and fewer resources select for
increased male parental care and therefore decreased poly-
gyny, (ii) harsh conditions at high elevations select for less
elaborated plumage due to metabolic costs and (iii) predators
may be attracted to the nest by colourful males [71]. We
found that hummingbird dichromatism increases with
elevation in mixed and open habitats, while it decreases at
high altitude for understorey species. Hummingbirds are all
polygynous [73], thus, neither increased male parental care
nor different mating systems [74] can explain the reduced
dichromatism that we detected at high elevations for under-
storey species. However, differences in displaying strategies
(e.g. lekking) could explain dichromatism variation in hum-
mingbirds [75,76]. The increased cost of colourful plumage
maintenance at high elevations due to UV and near-infrared
exposure could decrease dichromatism by selecting for less
elaborated plumage on both sexes [77–80], but further
research is required to evaluate how colourfulness changes
with elevation and the benefits/costs of maintaining struc-
tural colours at high altitudes. Predation pressure in
hummingbirds is thought to be stronger in juveniles and
females, due to the vulnerable offspring rearing period [81];
hence reduced predation pressure at high elevations [53]
would relax the pressure against evolving colourful plumage
in females and juveniles. Adult males employ their flashy
feathers during courtship and aggressive encounters [82],
and females and juveniles would also benefit from male-
like colour-rich plumage in social interactions [49]. However,
we found that most females and most monochromatic species
are not more colourful at high altitudes, suggesting that
relaxed predation pressure is not promoting colour-enriching
in females with elevation. Furthermore, we found that
instances of dichromatic species where the female is the col-
ourful sex are rare (electronic supplementary material,
figure S3). It has been suggested that females of many hum-
mingbird species exhibit plumage polymorphism—including
a ‘male-like’ morph [49,83], but the phenomenon has only
been confirmed for three species [84,85]. Hence, one possible
hypothesis is that increased dichromatism in high-elevation
mixed and open habitats is the result of enhanced visibility
[29] and relaxed predation pressure against colourful
plumage.

Our results show that hummingbird MD decreased with
altitude in the understorey. In the species analysed here, MD
is mostly male-biased, although the pattern found here does
not include many of the smallest species of the ‘bee’ clade,
where females have been found to be larger than males [86].
Including more species of this subclade may affect the magni-
tude of the effect. However, we consider unlikely that this will
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change the overall pattern given howwidespreadmale-biased
dimorphism is across all other subclades. We consider that a
more diverse morphological dataset like the one used here is
more appropriate for inferring the effect of ecological factors
on overall MD. Moreover, in hummingbirds as a whole,
males tend to be the larger sex [54], despite recent claims of
the opposite [86]; therefore, the predominant female-biased
size dimorphism in the ‘bee’ clade is an exceptional case for
the family.

Several studies have demonstrated that elevation strongly
affects flight in hummingbirds, imposing a selective pressure
on displaying males [12,16,52]. Our results partially agree
with biomechanical studies on hummingbirds showing an
increase in male wing size to compensate for lower air den-
sity at high elevations [10], though this only applies to open
habitats where aerial displays could be more exaggerated
(e.g. [87]), and may also influence foraging flight affecting
both sexes. In the understorey, these biomechanical factors
may be weakened because vegetation density would con-
strain maximum flight speed. Hence, it is important for
future studies to account for habitat structure on altitudinal
effects on morphology. We showed that differences in overall
body size extend to other traits such as bill shape, which may
be associated with resource specialization [8,88], and intra-
sexual competition and aggressive interactions [7,9]. By
contrast, dimorphism in tail length was not affected by
either altitude or habitat structure, which supports that the
main selective regime affecting this trait in hummingbirds
is sexual selection [43]. However, our models showing a posi-
tive association between MD and TLD when considering
altitude and habitat, suggest a tight association between tail
and wing length with changes in elevation, agreeing with
previous studies [10,14]. A non-significant association
between altitude and TLD is noteworthy in terms of flight
mechanics because it suggests that variation in tail length
may entail only modest flight costs [89].

Habitat structure and its interaction with elevation have
been documented to affect specific song properties, with a
study showing that low-frequency songs are common at
higher elevations and in open areas [19]. A recent study on
hummingbirds showed that transmission of high-frequency
vocalizations is affected by habitat structure [90]. We show
that songs are simpler in mixed habitats compared to the
understorey at middle elevations. This pattern is consistent
with the idea that habitat structure and acoustic competition
shapes the evolution of acoustic properties. Future studies
should evaluate if and how the environment affects hum-
mingbird song and if it follows the predictions of the
acoustic adaptation hypothesis [18], as well as the effects of
species richness and acoustic competition in hummingbirds
[24,26].

We found a positive correlation between dichromatism and
song complexity, regardless of habitat or altitude, and that the
most dichromatic patcheswere responsible for this pattern. The
use of multiple cues to signal condition or to attract the oppo-
site sex is important inmanyanimal groups [31,91], and several
hypotheses have been proposed to explain the evolution of
signal integration. The pattern shown here is particularly allur-
ing given that it integrates distinct perception axes (visual and
auditory), and it could represent a case of evolution of redun-
dant signals [39,92]. If signalling traits are associated with
good condition, a single sexual character could partially rep-
resent the quality of the individual and complementary traits
could provide a better overall assessment. In hummingbirds,
male song could function as a long-range female attractor,
and conspicuous coloration of the crown and gorget can act
as a secondary quality indicator when in visual contact [93].
This relationship in hummingbirds contrasts with a negative
relationship between plumage ornamentation and song elabor-
ation found in cardueline finches [94]. These contrasting
results could potentially be explained by higher colour
compartmentalization, which is common in many humming-
birds. Specific patches are brightly coloured (crown and
gorget) and used during displays, while others are drab and
associatedwith crypsis, yielding dissociation and colour diver-
gence due to simultaneous pressures from sexual and natural
selection [45,46].

Interestingly, we found altitude-dependent correlations
between TLD and song complexity. At higher altitudes, the
two traits are negatively correlated, while in lower altitudes
the relationship is positive (due to a negative coefficient
for the interaction). This negative association at high altitudes
can be interpreted as an example of the transference hypoth-
esis [35,36], which could explain why in these environments
species with complex songs lack long tails. It is fascinating
that a visual trait such as coloration can relate to an acoustic
trait in one direction, while another visual trait, such as long
tails, shows an opposite association.

Given the evidence presented here and in other studies,
sexual dimorphism can be seen as a product of pressures ran-
ging from ecological differences between sexes [8,95] to
differences as a result of intra- [7,9] and inter-sexual selection
[74,96]. Although a universal trait that represents the strength
of sexual selection can be convenient for comparative studies,
it is likely that a single trait is insufficient, and that some traits
useful as proxies in some clades are not in others [97]. None-
theless, TLD in hummingbirds seems a promising character
to indicate effects produced mainly by sexual selection.
Future research should explore how the traits studied here
relate to physiological indicators of sexual selection, such as
testis size, hormonal condition and reproductive success
[74,98,99]. Our results are consistent with the hypothesis
that sexually dimorphic traits are shaped by forces other
than sexual selection and should encourage future research
to expand traditional views about the evolution of communi-
cation signals, providing a broader framework to understand
their role in diversification, ecology and social behaviour.
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