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ABSTRACT
The fundamental frequency (F0) is a key parameter for characteris-
ing structures in vertebrate vocalisations, for instance defining 
vocal repertoires and their variations at different biological scales 
(e.g. population dialects, individual signatures). However, the task is 
too laborious to perform manually, and its automation is complex. 
Despite significant advancements in the fields of speech and music 
for automatic F0 estimation, similar progress in bioacoustics has 
been limited. To address this gap, we compile and publish a bench-
mark dataset of over 250,000 calls from 14 taxa, each paired with 
ground truth F0 values. These vocalisations range from infra-sounds 
to ultra-sounds, from high to low harmonicity, and some include 
non-linear phenomena. Testing different algorithms on these sig-
nals, we demonstrate the potential of neural networks for F0 
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estimation, even for taxa not seen in training, or when trained 
without labels. Also, to inform on the applicability of algorithms 
to analyse signals, we propose spectral measurements of F0 quality 
which correlate well with performance. While current performance 
results are not satisfying for all studied taxa, they suggest that deep 
learning could bring a more generic and reliable bioacoustic F0 
tracker, helping the community to analyse vocalisations via their F0 
contours.

Introduction

To produce acoustic signals, vertebrates typically vibrate soft tissue structures within 
their vocal apparatus (e.g. the laryngeal tissue for mammals, or the syringeal membrane 
for birds). The frequency at which vocal organs oscillate, measured in Hertz, is called the 
fundamental frequency or F0 (Huang et al. 2001; Herbst 2016). It is linked to the notion 
of pitch in human psychoacoustics, which relates to the perception of frequency. 
However, not all vocalisations result in vibration of the vocal apparatus, and such 
vocalisations are said to be unvoiced.

Fundamental frequency (F0) is a principal feature in the description of acoustic 
signals. In speech, F0 serves multiple purposes (Hirst and de Looze 2021), from signalling 
speaker sex (Honorof and Whalen 2010), to providing a cue to conversational turn- 
taking (Skantze 2021), and has been studied by phoneticians for its influence on inter-
pretability of speech and song (Lindblom 1962; Sundberg et al. 1993; Ekström et al. 2022). 
F0 is also widely used in music applications (Orio 2006), as the physical measurement of 
which note is being sung or played by an instrument.

In bioacoustics, F0 can carry biologically meaningful information such as a cue for 
body size (Fitch and Hauser 2003; Bowling et al. 2017) or age (Stoeger et al. 2014). 
Additionally, within vocalisation, how the F0 evolves through time (i.e. the F0 contour) is 
a widespread feature used in defining units of a vocal repertoire (Kershenbaum et al.  
2016), and can also hold community markers (Garland et al. 2015; Henry et al. 2015) or 
even information on individuals’ identities (Lehmann et al. 2022; Deecke and Janik 2006; 
Linhart and Šálek 2017; Wijers et al. 2021; Sayigh et al. 2022).

It should be noted that the concept of F0 is only applicable to approximately periodic 
sounds. Like in speech or music, some bioacoustic signals are imperfectly periodic, in 
which case F0 may be hard to define or estimate, or aperiodic, in which case there is no F0 
to estimate (spectral metrics such as the centroid frequency may then be more relevant to 
their description). For instance, these unvoiced vocalisations can be the/sh/or/S/pho-
nemes in human speech, calls produced with the tongue and lips by non-human primates 
(Lameira et al. 2015), cetacean echolocation clicks (Tyack and Miller 2002), or ‘chaotic’ 
calls produced via vocal organ vibration (Wilden et al. 1998; Fitch et al. 2002).

Task’s challenges

Biologically produced signals, even if periodic, do not always have an unambiguous 
fundamental frequency (Titze 1995): influences such as nonlinear phenomena can occur 
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such as sub-harmonics or biphonation (Wilden et al. 1998; Fitch et al. 2002; Riede et al.  
2008), yielding variations between and/or within the signal’s cycles. This, coupled with 
changes in the recorded signal due to propagation or interference with background noise 
(especially in outdoor far-field settings), make F0 estimation a challenging problem. 
Common mistakes include harmonic jumps (e.g. confusion between the first overtone 
and the fundamental), or false positives (detecting an F0 when its actually absent, either 
because the vocal organ is not active or because the vocalisation is non-periodic).

Related works

F0 estimation in speech and music

Many ‘traditional’ methods for F0 estimation rely on auto-correlating an assumed 
stationary signal segment to identify a period. More recently, deep neural net-
works have been proposed instead. In this study, we compare a set of classic and 
recent algorithms used in the Music Information Retrieval (MIR) and speech 
communities.

● PRAAT (Boersma and Van Heuven 2001) (speech): after applying an auto- 
correlation to the signal waveform, this algorithm assumes the first peak should 
correspond to the main cycle period and indicate the F0. In PRAAT, the size of the 
auto-correlation window is three periods of the pitch floor parameter, which was set 
to 27.5 Hz in our experiments (to match that of CREPE1). The chosen window size 
would be problematic to deal with rapid frequency sweeps or trills, but these were 
not encountered in the present dataset.

● p-YIN (Mauch and Dixon 2014) (speech and music): the original YIN algorithm is 
also based on the auto-correlation method, but with several modifications such as 
a parabolic interpolation (De Cheveigné and Kawahara 2002). Then, p-YIN 
improves performance by storing multiple F0 candidates at each time frame, taking 
their probability into account to yield a smoothed F0 contour.

● CREPE (Kim et al. 2018) (music): a neural network that convolves over waveforms. 
With its classifier architecture, each output bin corresponds to a specific frequency, 
predicting whether or not it corresponds to an active F0. The original model was 
trained on 22 hours of synthesised and re-synthesised monophonic music of known 
pitch and from varying instruments.

● PESTO (Riou et al. 2023) (music): a neural network that convolves over Constant-Q 
Transforms (CQT), i.e. spectral representation with varying kernel sizes. This model 
is self-supervised (trained without ground truth labels) based on objectives of 
equivariance with respect to pitch shifts and invariance to noise addition. The 
original model used here was trained on two hours of people singing Chinese pop 
songs.

● BASIC-pitch (Bittner et al. 2022) (music): is a convolutional neural network trained 
to detect multiple active pitches (e.g. to deal with multiple instruments playing 
simultaneously). From a CQT representation, the model yields three matrices with 
the same number of time frames as the input. The first matrix predicts if a note is 
starting at a time frame (note onset), the second denotes if a note is being active 
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(with a resolution of one bin per semi-tone), and the third denotes if a pitch is active 
(similarly to the latter but this time with a resolution of three bins per semi-tone). 
To use BASIC-pitch as a monophonic F0 estimator, for each frame, we took the 
frequency bin of the third matrix with the highest confidence as the predicted F0.

F0 estimation in bioacoustics

Bioacoustic analysis software (e.g. Raven (2023), Luscinia (Lachlan 2022)) or packages 
(e.g. Seewave (Sueur et al. 2008), warbleR (Araya-Salas and Smith-Vidaurre 2017), 
Parselmouth (Jadoul et al. 2024) integrate spectral peak finding and/or F0 estimation 
methods, using algorithms such as short-term cepstral transforms or PRAAT’s auto- 
correlation. These ready-made F0 estimation tools are used in many bioacoustic studies 
(Gamba et al. 2011; Garcia et al. 2014; Hagiwara et al. 2024; Poupard et al. 2019; Röper 
et al. 2014), often using PRAAT but also sometimes combined with manual procedures 
(Torti et al. 2017).

For specific bioacoustic purposes, new approaches to F0 estimation were also devel-
oped. This includes training convolutional neural networks to recognise tonal energy 
using real or synthetic targets (Li et al. 2020); training with a modified loss function that 
enables learning from noisy pseudo-labels (Li et al. 2023); or tuning the YIN algorithm to 
bird vocalisations (O’Reilly et al. 2017). Another study also reported on a benchmark of 
numerous F0 estimation algorithms on electro-glottographic signals for bioacoustic 
applications (Herbst and Dunn 2019). However, all of them tested algorithms on 
a single type of signal or a single taxon, as opposed to MIR F0 estimation studies that 
often benchmark performance on diverse signals to get a sense of an algorithm’s 
versatility. Working with datasets focused on a single taxon might result in algorithms 
being over-specialised, necessitating re-tailoring or development for each new taxon.

Overall, whether manual or automatic, the widely adopted approach to estimate the F0 
of non-human vocalisations relates to finding the lowest frequency spectral peak and/or 
the inter-harmonic distance at each time frame. While in some cases, this leads to an 
imperfect measure of vocal organ vibratory speed, it still significantly correlates with, and 
is virtually always the same as, F0. Moreover, a large body of literature has successfully 
found ecologically relevant acoustic structures using F0 estimation approaches (Bowling 
et al. 2017; Fitch and Hauser 2003; Stoeger et al. 2014; Garland et al. 2015; Henry et al.  
2015), supporting the idea that investing time to apply and validate deep learning tools in 
order to automate F0 estimation will be greatly beneficial to the scientific communities 
that rely on bioacoustics data.

Objectives

In bioacoustics, deep learning already strongly contributes to tasks such as vocalisation 
detection/classification (Stowell 2022) or clustering (Best et al. 2023), but this technique 
is not yet widely used for F0 estimation. In speech and music F0 estimation however, 
deep learning has demonstrated both versatility (Gfeller et al. 2020; Bittner et al. 2022; 
Riou et al. 2023) (i.e. handling a wide diversity of signals) and robustness to noise (Han 
and Wang 2014; Kim et al. 2018), two important challenges in bioacoustics, as species 
emit diverse vocalisations in sometimes very noisy settings.
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Thus, it appears that deep learning could improve bioacoustic F0 estimation, but 
datasets to both train and evaluate models in this specific domain are lacking. Here we 
compile and publish a cross-species dataset of non-human vocalisations with ground 
truth F0 contours from previously annotated vocalisations. They come from studies that 
were conducted independently from this one, most of the time including a form of 
annotation quality control, and some already published in peer-reviewed journals (see 
Supplementary text 1). We also report how both traditional and deep learning algorithms 
perform on these data.

With this work, we provide an analysis on different taxa so that practitioners can make 
informed decisions of which methods to use, how to apply them, and requirements in 
terms of vocalisation characteristics and annotation availability. Additionally, we hope to 
i) foster research and development of automatic F0 estimation on signals other than 
speech and music, and ii) significantly reduce the time investment required to track F0 
contours of a new taxon.

Multi-F0 versus mono-F0 estimation

In many acoustic scenes, it is possible for more than one F0 to be active 
simultaneously. In MIR, pitch estimation is thus divided into two tasks, multi- 
pitch for which the goal is to identify all audible (or annotated) F0, potentially 
multiple in one time frame, and mono-pitch or melody estimation aiming to 
produce a single sequence of frequency values for a given input signal (Salamon 
et al. 2014).

In bioacoustics, multi-F0 estimation is needed for cases with overlapping calls (which 
are common in natural conditions), or for species that are capable of biphony (generating 
two independent tones simultaneously, often referred to as F0 and G0 (Papale et al. 2015; 
Brown et al. 2003; Suthers and Zollinger 2004; Zollinger et al. 2008; Filatova et al. 2009). 
In order to limit the scope of this work, we benchmark monophonic algorithms only 
(BASIC-pitch was designed for multi-pitch estimation but we use it in a mono-pitch 
fashion here). The consideration of multi-F0 estimation is left for future work. For 
datasets that originally included overlapping calls, we discarded these sections to keep 
only those with a single active F0 according to the ground truth annotations.

Terminology

For the data introduced here, one may argue that the term ‘pitch’ would be more 
appropriate than ‘F0’, since annotations were conducted by humans and/or machines, 
and do not necessarily match vocal fold vibration speed. Nonetheless, the term ‘pitch’ 
might suggest that annotations describe human acoustic perception, collected from 
listening experiments, and the machine- or spectrogram-based annotations might give 
different results than perceptual tests. For this reason, we refer to the presented ground- 
truth as F0.

To foster transdisciplinarity and since many methods used here originated within the 
MIR community, we borrow many terms from the field which are not common in 
bioacoustics. Hence, we introduce them in the following, along with a visual illustration 
in Figure 1:
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● Frame: A short time interval over which the signal is assumed to be stationary and 
from which we estimate the spectrum; that is one temporal bin of a spectrogram.

● Voiced frame: A frame containing a voiced sound (e.g. an animal is producing 
a periodic sound with its vocal apparatus).

● Voiced section: A temporal window of multiple voiced frames.
● Octave: interval of a factor of two in frequency.
● Semitone: interval of a twelfth of an octave.
● Pitch accuracy: proportion of frames with a predicted F0 that is close to the reference 

contour (using a fixed frequency interval threshold such as half a semitone).
● Chroma accuracy: similar to pitch accuracy, but ignoring octave shifts (e.g. 500 Hz 

±1 semitone is considered accurate for a 1000 Hz F0 in terms of chroma accuracy).
● Recall: proportion of frames that were predicted as voiced among the frames 

annotated as such.
● Vocalisation recall: proportion of voiced calls that were correctly detected. Unlike 

recall, this metric is based on correctly detecting at least a third of the voiced frames 
within the call (Roch et al. 2011).

● Specificity: the proportion of frames predicted as not voiced among the frames 
annotated as such. Specificity can be chosen here instead of precision as proportion 
of silent frames in all datasets remains relatively small.

● Sub-harmonic: A variation that occurs between consecutive cycles of a signal, lead-
ing to a dissimilarity between consecutive periods and a similarity between non- 
consecutive periods. In the frequency domain, this phenomenon typically generates 
energy at half the F0.

Figure 1. Example of a vocalisation spectrogram indicating different terms used in F0 estimation. This 
vocalisation was emitted by an Arctic grey wolf (Canis lupus arctos ssp.). Orange markers denote 
annotated ground truth F0 values.
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Materials and methods

For this study, we set out to gather, describe and publish a cross-species dataset of audio 
vocalisations with corresponding annotated F0 contours, as well as to report on how 
different algorithms perform on the task of single F0 estimation. This section starts by 
describing the published dataset, both in broad numbers and with fine-scale acoustic 
features of its components. Then, we report on implementation details for the compar-
ison of state-of-the-art F0 estimation algorithms, especially regarding the training of 
models under different degrees of supervision.

Dataset

We contacted researchers who had published studies on measuring the F0 in non-human 
vertebrate vocalisations. In addition, we reached out to members of the International 
Bioacoustics Council (IBAC) via their mailing list and at the 2023 congress (Oct 27– 
Nov 1, Hokkaido, Japan). The numerous answers allowed us to assemble a corpus of labelled 
acoustic data across 14 taxa of mammals and birds, which is described in Table 1.

This corpus combines the results of previous works on bioacoustic signals, each of 
which used specific methods to generate F0 ground truths. Some were traced by hand 
with custom graphical interfaces (manual), others used automatically estimated F0 
contours but corrected them by hand (semi-automatic) and others used fully automated 
procedures, either custom or out-of-the-box such as Raven Peak Frequency Contour 
(PFC). Note that in the latter case, the operator still annotates the spectrogram with 
time × frequency bounding boxes around the F0, which highly limits the potential for 
errors. Further details on potential quality controls over annotations are described in the 
data description in Supplementary text 1.

This corpus integrates diverse taxa, across mammals and birds, and with diverse 
vocalisation properties (Figure 2). It is not an exhaustive set of all sound-producing 
species, and the associated results might not be representative for taxa not included such 
as frogs or insects for instance. Nevertheless, vocalisations of this corpus range from 
infra- to ultra-sound, some are shorter than 0.1 sec and others last several seconds, some 
appear to reflect non-linear phenomena (e.g. spotted hyenas vocalisation often contain 
sub-harmonics) and others are close to pure tones (e.g. Reunion grey white eyes 
vocalisations do not have harmonics). Moreover, across datasets, different signal acquisi-
tion methods were used, including collar-mounted and hand-held directional recorders 
for spotted hyenas and hummingbirds, in-lab recording chambers for rodents, or out-
door far-field recorders for dolphins (see Supplementary text 1 for a complete description 
of recording protocols). This strongly affects the resulting signal quality and conse-
quently how easily the F0 can be estimated.

The dataset introduced in this study is a conglomerate of previous works from 
different researchers. Thus, recording and ground truth characteristics vary. For some 
taxa, F0 labels result from a global tuning of automatic procedures, which can introduce 
errors, whereas labels for other taxa are the result of fine-grained manual interventions, 
which rely on human bias. Nonetheless, publishing such data is beneficial to the com-
munity, especially with a repository that is open to refinements from future works.
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Vocalisations characterisation

Prior to estimating F0 values and comparing algorithms, we wish to obtain a fine-grained 
description of the dataset, enabling the formulation of hypotheses regarding signal char-
acteristics that may influence F0 estimation accuracy. Specifically, spectral properties of 
vocalisations might help us identify challenges faced by algorithms to estimate F0 values. In 
this section, we describe the four metrics chosen for this purpose, some of which are specific 
to this study because they are based on annotated F0 contours: the signal-to-noise ratio 
(SNR), the F0 salience, the overtone-to-fundamental ratio (OFR), and the sub-harmonic 
ratio (SHR). Thus, we measure the energy of a vocalisation both in relation to background 
noise and in terms of how well it matches its corresponding annotation.

Note that except for the SNR, all metrics are computed from spectral frames (S), for 
which we use Hann windows without padding (window sizes and hop sizes are reported in 
Table 3). To reduce effects of background noise and frequency response, similarly to 
previous works (Chen and Bilmes 2006; Xie et al. 2021), we normalise spectra prior to 
their analysis (i.e. measuring salience, OFR and sub-harmonic ratio). The normalisation 
consists of subtracting the median of each frequency bin over background segments (not 
annotated as voiced) and dividing by the standard deviation. Note that this process is only 
used for the dataset analysis, F0 estimation methods are applied to the original audio. 
Finally, preliminary experiments have shown that OFR and SHR measurements were only 
reliable for salient F0 ground truths: unexpected values such as SHR higher than 1 were 
yielded if we did not target salient vocalisations. For this reason, we report only the values of 
frames with a salience above 0.6.

Signal-to-noise ratio

A commonly used descriptor of acoustic signals is their Signal-to-Noise Ratio (SNR). For 
each vocalisation, we high-pass filter the signal with a Butterworth filter of order three with 
a low-frequency cut-off set at the minimum F0 measured for the signal. The signal’s power 
is then estimated as the root mean square (RMS) measurement of the filtered call, which is 
compared between sections annotated as voiced (Evoiced) and its surroundings (Ebackground) 
to yield the SNR. Since during voiced sections vocalisation signals are mixed to background 

Figure 2. Distribution of F0 annotations per taxa. Blue and orange denote mammals and birds 
respectively, and black bars show the three quartiles of each distributions. The distribution of 
modulation rates report on linear F0 slopes between each annotation points.
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noise, to isolate their power, we subtract the power of surrounding sections before 
computing the ratio (Equation 1). Note that we cannot apply the logarithm for vocalisations 
with Evoiced<Ebackground, and therefore we drop these out of the measurement (an alternative 
to include them could have been to compute the signal to noise and signal ratio). Low SNR 
values are typically expected if the recorder was placed far away from the vocalising animal, 
in environments with high background noise, and/or if the vocalisation is produced softly. 
We report on SNR modes in Table 1.

F0 salience

Similarly to previous work (Salamon et al. 2011), we characterise the salience of F0 contours 
relative to background noise. However, for this study, we aim to disentangle contributions 
of the fundamental frequency from harmonics. This motivated the design of two separate 
metrics, namely salience and OFR. The salience indicates by how much an F0 contour 
stands out from its surrounding spectrum. Low salience values are expected in vocalisations 
at low SNR and for wide-band/non-tonal vocalisations. We propose to compute the 
salience of an F0 annotation as the ratio of the energy in its close frequency band (set 
from one semitone below to one semitone above) and the energy of its surrounding octave. 
Equation 2 formalises this given a spectrum S, a F0 ground truth f 0, and with numerical 
values in semitone. If the distribution of spectral energy were to be uniform, salience would 
be 1

6, and if all the energy is contained in the tone surrounding the F0 contour, salience 
would be 1. 

Overtone-to-fundamental ratio (OFR)

We use the term overtone-to-fundamental ratio (OFR) to describe the amount of 
energy present in the harmonics relative to the energy of the fundamental. To measure 
it, we chose a normalised formulation, namely the proportion of energy contained in 
the harmonics within the energy of the harmonics and the fundamental combined 
(Equation 3). Typically, a pure tone would have an OFR close to 0 whereas vocalisations 
with strong harmonics like human speech will have a value close to 1. In this study, we 
refer to vocalisations with a high OFR value as ‘harmonic’ and those with a low OFR 
value as ‘non-harmonic’ (harmonics can still be present but they have less energy than 
for other signals). 
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Sub-Harmonic Ratio

The Sub-Harmonic Ratio (SHR) proposed by Sun (2000) can be used to detect sub- 
harmonics in acoustic signals (see also Herbst (2021) for empirical results with this 
metric). Given an F0 value, it is computed by taking the ratio between the sub- 
harmonic amplitude (at half the F0 value) and the harmonic amplitude (Equation 4). 
Following Sun (2000), we set N to five. SHR values are expected to approach one for 
signals with strong sub-harmonics (having the same amount of energy as the funda-
mental), or 0 for signals without any. 

Distributions of salience, SHR and OFR values are given in Figure 3, and help 
understand potential factors that might hinder F0 prediction.

Dataset grouping

To ease the reading of results across this dataset of 14 taxa, we grouped them by trends 
of contour characteristics (salience and OFR appeared to impact performance the 
most). We thus split taxa into four groups based on the median values of salience 
(0.6) and OFR (0.3). The resulting groups are presented in Table 2.

Experimental framework

The variety of signal characteristics present in this corpus required specific pre- 
processing parameters to be set for each dataset, which are described in Table 3.

Figure 3. Characterisation of F0 contours with their salience, SHR, and OFR. For more reliable 
measurements, SHR and OFR values are reported only for frames with a Salience> 0:6. Horizontal 
dashed lines delimit dataset groups which are labelled on the right side. Blue and orange denote 
mammals and birds respectively, and black bars show the three quartiles of each distributions.
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Signal slow down/acceleration

Slowing down or accelerating a signal by a given factor (i.e. artificially changing 
the sampling frequency) is a straightforward way to scale all frequencies by that 
same factor. For instance, if a 440 Hz tone was recorded at 44 kHz and we play it 
at 22 kHz, its F0 will shift to 220 Hz. This comes in useful for humans to listen to 
ultrasonic sounds, or when using models that operate within a fixed frequency 
range like in this study.

Indeed, many of the methods that we evaluate were designed for signals within 
the frequency range of human production and perception. For instance, the 
CREPE and PESTO neural networks are trained as classifiers (as opposed to 
regression models), with a fixed output dimensionality, and with each output 
bin corresponding to a specific frequency (for PESTO: three bins per semitone 
from 27.5 Hz to 8 kHz; for CREPE: 5 bins per semitone from 32.7 Hz to 2 kHz). 
This presents challenges for detecting F0 with these algorithms for vocalisations 
that fall outside of this range. For instance, rodents or dolphins emit ultrasonic 
vocalisations (above the human hearing range), and others such as lions emit 
close to infrasonic vocalisations (Figure 2).

Table 2. Dataset groups attributed to each taxa based on their signal characteristics. Taxa with 
a median salience higher than 0.6 are considered salient, and taxa with a median OFR higher than 0.3 
are considered harmonic. Dataset groups are delimited by dotted lines in Figure 3.

Low salience High salience

Low OFR dolphins, La Palma chaffinches bottlenose dolphins, rodents, hummingbirds, disk- 
winged bats, Reunion grey white eyes

High OFR monk-parakeets, lions, orangutans, 
long-billed hermits

canids, spotted hyenas, little owls

Table 3. Processing parameters chosen for each dataset. The window size, defined before 
signal slow down or acceleration, is used without padding, only for spectrogram visualisa-
tion, vocalisation characterisation, and for the p-YIN algorithm which operates on a user-set 
frame length. Time steps are set as a fraction of the window size, and used for spectrogram 
generation, vocalisation characterisation, annotation resampling, and also F0 prediction (F0 
time series are resampled via linear interpolations using the mir_eval package (Raffel et al.  
2014). A slow down factor of one is neutral, and a factor below one is an acceleration.

Taxon Window size (ms) Time step Slow down factor

canids 64 1/8 1
spotted hyenas 256 1/8 1
little owls 13 1/8 1
bottlenose dolphins 11 1/8 20
rodents 2 1/8 50
hummingbirds 12 1/16 5
disk-winged bats 1 1/16 20
Reunion grey white eyes 23 1/16 5
monk parakeets 12 1/16 3
lions 128 1/8 0.5
orangutans 47 1/8 1
long-billed hermits 12 1/16 5
dolphins 8 1/8 20
La Palma chaffinches 23 1/16 5
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To be able to use the pre-trained CREPE, BASIC-pitch and PESTO models for 
ultra- and infra- sonic vocalisations, we slow down or accelerate signals to shift 
them into a human perceptual frequency range. The signal samples remain 
unaltered, but the sample rate is modified by dividing it by a fixed factor. As 
an example, the rodent corpus was sampled at 250 kHz with vocalisations between 
10 and 100 kHz. With a slow down factor of 50, we set the sampling frequency to 
5 kHz for vocalisations to lie between 0.2 and 2 kHz. Chosen slow down factors 
for each taxa are specified in Table 3, with a factor of one being neutral, and 
a factor below one being an acceleration.

After slowing down or accelerating the signal, for algorithms such as CREPE 
that work with a fixed sample rate, the signal is resampled using the bandlimited 
sinc interpolation method (McFee 2016). As a post-processing step, we multiply 
predicted frequencies by the slow down factor before evaluating them against 
ground truths.

Benchmarked algorithms and model training

In this study, we compare different algorithms and deep learning models used in speech, 
music and/or bioacoustic F0 estimation: PRAAT, p-YIN, CREPE, PESTO, and BASIC- 
pitch; which were introduced in the introduction.

The CREPE and PESTO deep neural networks have been trained for pitch estimation 
in music, but we wish to investigate how their performance might evolve if we train them 
for bioacoustic F0 estimation. Wishing to highlight the effect of training data on model 
performance, we follow the published training procedures to control for performance 
variation due to other factors:

● CREPE (Kim et al. 2018) is a supervised model with a classifier architecture. It takes 
the raw waveform as input, on which six convolutional layers are applied, before 
a fully-connected layer outputs confidence values predicting if frequency bins 
correspond to the F0 ground truth (there are 360 frequency bins between 
32.70 Hz and 1975.5 Hz, each covering 20 cents). Following the original publication, 
we train the same model architecture, iteratively minimising the binary cross 
entropy between predictions and ground truths, using a ADAM optimiser and 
a learning rate of 0.0002. We use CREPE’s pytorch implementation (Morrison  
2023), initialising weights with that of the published model trained on musical 
signals (this was motivated by the observation of better performance when doing 
so).

● PESTO (Riou et al. 2023) is a self-supervised model that learns without ground truth 
labels. It does so by pitch-shifting training examples, and predicts F0 values from 
both the original and shifted versions (based on CQT representations of signals). 
During training, the model optimises a specific loss function which expects F0 
predictions to have the same difference as the known shift (i.e. equivariance 
objective). As the algorithm does not learn actual F0 values, after training, synthetic 
signals of known frequency are used to produce a calibration that permits F0 
recovery. Again to minimise confounding factors, we used PESTO’s public imple-
mentation, using the same architecture and ADAM optimiser configuration. Only 
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a few modifications to the original settings were necessary to achieve a functional 
learning, namely increasing the minimum CQT frequency to deal with small files (to 
represent low frequencies, the CQT needs large temporal windows), and increasing 
the range of the frequencies used in the post-training calibration).

Given these two model architectures and training protocols, each state of the 
art in either supervised or self-supervised F0 estimation in music, we test how 
training them with bioacoustic data might improve their performance in this 
domain. For this, we emulate different scenarios of data availability described in 
the following (by ‘target’ we refer to the taxon that a given model will be 
evaluated on):

● Self-supervised: In this scenario, a model is trained without the need of annotated F0 
contours, which is the most common case when engaging in bioacoustic analysis. 
Here, we train PESTO on the vocalisations of the target taxon without using their 
associated F0 ground truth. Therefore, the size of the training set is the number of 
available vocalisations reported in Table 1. Since no labels are used in training, 
vocalisations from the same taxon are used to evaluate model performance post- 
training.

● Supervised on other taxa: In this scenario, we test the generalisation capacity of 
a supervised model trained on many taxa, by measuring how it behaves on a new 
one. With this, we assess the feasibility of a generic bioacoustic F0 estimation model 
that doesn’t need retraining. Here, we train CREPE on a dataset combining all taxa 
except the target. To mitigate risks of over-representing taxa with many vocalisa-
tions (e.g. rodents), we limited the number of vocalisations per taxon to 1,000. Once 
the model is trained, its performance is evaluated on the target taxon that was 
retained from the training set.

● Supervised on the target taxon: In this scenario, we test how well a supervised model 
performs if it was trained on its target taxon. It is expected to attain the best 
performance, but is only applicable in a limited number of use cases: when 
researchers have access to F0 annotations for the taxon they want to analyse. We 
thus train CREPE on the target taxon, splitting the data in a 5-fold manner to 
dissociate training from evaluation data. Therefore, here training set sizes are 80% of 
the number of available vocalisations reported in Table 1.

Performance computation

We use the mir_eval package (Raffel et al. 2014) to compute recall, specificity, pitch 
accuracy and chroma accuracy for each vocalisation independently, before averaging 
them per taxa. For pitch accuracy and chroma accuracy, we consider an F0 prediction to 
be correct if closer than half a semitone from the ground truth (Salamon et al. 2014) 
(preliminary experiments with more permissive thresholds did not significantly change 
results).

The frequency resolution of F0 annotations varies across datasets, with particularly 
small sizes of the Fourier windows or specific manual label procedures that may lead 
to coarse quantisation of F0. To avoid biased results we ensured that the threshold 
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used for evaluating pitch and chroma accuracy is larger than any of the F0 
quantisation.

The recall and specificity metrics reflect an algorithm’s behaviour in terms of 
voicing detection (i.e. the algorithm’s capacity to differentiate between voiced and 
non-voiced frames). Some algorithms such as p-YIN compute a voicing probability, 
and others a F0 confidence value. Therefore, to generate a binary voicing prediction, 
we apply a threshold on these values. For each taxon and algorithm combination, we 
set this threshold to the balance point of the Receiver Operating Characteristic (ROC) 
curve (i.e. the point with equal recall and specificity). Threshold values are reported in 
Supplementary Figure 1.

For some detection tasks, the specificity metric can be over-optimistic as 
compared to the precision. This occurs for imbalanced datasets that have many 
more negative labels than positive ones (e.g. for voicing detections, having much 
more background sections than voiced sections). Since the specificity normalises 
the proportion of true negatives by negative labels, specificity scores might be 
high even with a significant proportion of detection errors. The precision how-
ever, normalises by the number of positive predictions, and does not suffer from 
this bias. In our case, amounts of positive and negative labels are similar, hence 
we report on the specificity metric which is more commonly found in the F0 
estimation literature.

Results

After analysing per-taxon vocalisation characteristics, and having trained models 
under varying levels of supervision, we run F0 estimation on the whole corpus. We 
visually demonstrate this with randomly sampled examples of predictions in 
Figure 4.

In this section, we detail how the different algorithms and neural network models 
behave on each taxon, and this for different performance metrics. Throughout the text 
and figures, we refer to the out-of-the-box CREPE and PESTO models trained on musical 
signals as ‘crepe-music’ and ‘pesto-music’ respectively, PESTO models self-supervised on 
their target taxon as ‘pesto-bio’, CREPE models supervised on their target taxon as 
‘crepe-consp’. (for conspecific), and CREPE models supervised on other taxa than their 
target as ‘crepe-heterosp’. (for heterospecific).

F0 estimation accuracy

We report on the accuracy of estimating the F0 for each algorithm in Figure 5 with the 
pitch accuracy and chroma accuracy (tolerating octave errors).

Overall, the dataset grouping categories seem to explain most of the variations in 
performance. For taxa with a salient F0, neural networks trained on bioacoustic signals 
perform well (pitch accuracy > 0:69 and chroma accuracy > 0:74 for pesto-bio, crepe- 
heterosp. and crepe-consp.). Interestingly, for taxa with salient contours, the type of 
supervision (being supervised on the target taxon or being self-supervised) has 
a relatively small impact on performance. This is shown in Figure 6, comparing crepe- 
consp. and pesto-bio. Also, for canids and little owls, the self-supervised model performs 
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slightly better than the model supervised on the target taxon. This could indicate label 
noise (i.e. annotation errors) and/or overfitting. Typically for the latter, the model finds 
an over-specialised relationship between inputs and correct predictions that works well 
on the training data, but does not generalise to new examples. However, for taxa with 

Figure 4. Spectrograms of randomly sampled vocalisations for each of the dataset’s taxa, along with 
F0 predictions from different algorithms. Frequency values are given in kHz, and ticks on the abscissa 
are placed every 0.1 sec. Dataset grouping categories are also indicated on the right side of the figure.
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non-salient vocalisations, the self-supervised training procedure becomes counter pro-
ductive (pesto-music outperforms pesto-bio, Figure 5), suggesting that the equivariance 
objective relies on contours with strong energy to function correctly.

Figure 6. Pitch accuracy comparison. The performance of the top performing model (crepe-consp.) is 
plotted against the performance of other algorithms. Points on the diagonal () show equally 
performing models, whereas points far apart from it show large performance gaps.

Figure 5. F0 estimation performance for each algorithm and taxon. Categories follow the dataset 
grouping described in methods (the abscissa within a category varies for readability but does not carry 
information). Boxes extend from the first quartile (Q1) to the third quartile (Q3) of the data, with a line 
at the median, and whiskers extend from the box to the farthest data point lying within 1.5× the inter- 
quartile range (IQR) from the box.
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As for the other algorithms, on salient contours, PRAAT seems to be subject to octave 
errors for vocalisations with strong harmonics (gap between pitch and chroma accuracies), 
but still shows the most reliable performance as compared to p-YIN or some neural networks 
trained on musical signals (BASIC and pesto-music). Comparisons between crepe-music and 
crepe-consp. (Figure 6), or between crepe-music and crepe-heterosp. (Figure 5), show that 
training neural networks on bioacoustic data mostly improves performance in F0 estimation. 
This is true even for relatively small datasets such as for disk-winged bats (272 vocalisations 
used in training). However, it is worth noting that the only taxon for which crepe-consp. has 
lower performance than crepe-music (although by a small margin) is the taxon with the 
lowest amount of annotated vocalisations (128 vocalisations in the training set).

For the less salient vocalisations, performance variability increases. Supervised train-
ing on the target taxon (crepe-consp.) still leads to the best results, but except for the 
long-billed hermits, models trained on other taxa (crepe-heterosp.) remain relatively 
close (their median pitch accuracy are 0.67 and 0.63 respectively). We show this relation-
ship in Figure 6, in which we compare the pitch accuracy of crepe-consp. with other 
methods. Despite being relatively close in performance, the superiority of crepe-consp. 
over crepe-heterosp. demonstrates that in general, for training, data proximity (training 
with data that is similar to the application domain) is more effective than data quantity.

Accuracy as a function of salience

As salience appeared to be the most impacting vocalisation characteristic on F0 estima-
tion accuracy, we report on pitch accuracy as a function of salience in Figure 7 To 
characterise each vocalisation, we used its average salience and average OFR. Results here 
are reported across all taxa, for vocalisations with an average OFR above and below 0.5 
separately.

The salience metric appears to be a strong indicator of how well an F0 can be 
estimated. Indeed, the two almost follow a perfect identity relationship. This representa-
tion also confirms that for salient vocalisations pesto-bio performs well, similarly to 
supervised models, but a performance gap appears for the fainter contours with low OFR.

At low salience values, a tendency appears for lower performance with non-harmonic 
vocalisations as compared to harmonic ones, especially for p-YIN, BASIC and PESTO. 
This phenomenon suggests some reliance on harmonic structures to correctly estimate 
F0 values. Furthermore, Figure 7 shows that supervised models trained on bioacoustic 
data (crepe-consp. and crepe-heterosp.) generally perform better than other algorithms 
regardless of their harmonicity or F0 salience.

Voicing detection

We report on the capacity of the different algorithms to correctly discriminate between 
voiced and background frames in Figure 8. Across algorithms, vocalisation OFR does not 
appear to impact performance, but their salience does.

For the most part, all algorithms perform similarly in terms of voicing detection, 
except BASIC-pitch. This is probably due to the fact that an onset matrix is normally used 
to predict note activation, thus the distribution of confidence values used here might not 
allow a good discrimination between voiced and background frames.
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In their development of automated whistle contour extraction, Roch et al. (2011) also 
reported on vocalisation-wise recall (the proportion of vocalisations with a recall of at 
least 33%) to inform on the potential use of such algorithm for vocalisation detection. As 
shown in Figure 8 for this metrics, to the exception of BASIC-pitch, all scores are 
relatively high, with crepe-consp. being close to the top-line performance for almost all 
taxa.

Figure 8. Voicing detection performance for each algorithm and taxa (following the dataset grouping). 
The recall metric is averaged across all temporal frames, whereas the vocalisation recall gives the 
proportion of vocalisations with at least a third of its frames detected as voiced. Boxes extend from the 
first quartile (Q1) to the third quartile (Q3) of the data, with a line at the median, and whiskers extend 
from the box to the farthest data point lying within 1.5x the inter-quartile range (IQR) from the box.

Figure 7. F0 estimation performance of each algorithm as a function of salience. results are reported 
for vocalisations considered harmonic and non-harmonic separately (see Equation (3), with 
a threshold of 0.5).
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We report optimal threshold values that lead to these voicing detection performance 
in Supplementary Figure 2 An important insight brought by this visualisation is the 
amount of variability of this threshold depending on the taxon. Specifically comparing 
crepe-heterosp. and crepe-consp., we see that training on a variety of taxa makes that the 
model yields a more stable confidence prediction, which implies less taxon-specific 
tuning to find the optimal voicing confidence threshold.

Temporal smoothing of F0 predictions

In the performance comparison conducted so far, we focused on instantaneous F0 
estimation without temporal smoothing. Temporal smoothing such as the Viterbi algo-
rithm (Fujihara et al. 2006; Han and Wang 2014) is commonly used to track F0 values, as 
using priors from salient parts of a vocalisation might help in gaining accuracy for its 
fainter parts. We ran the crepe-consp. models applying a public implementation of the 
Viterbi algorithm (Kim et al. 2018), and compare scores in Table 4. Overall, temporal 
smoothing lead to similar result or was slightly detrimental. This might be due to the 
public Viterbi implementation used being specifically tuned for musical signals (Kim 
et al. 2018), for which typical frequency modulation rates differ from that of non-human 
vocalisations.

Discussion and conclusion

Estimating the F0 of non-human vertebrate vocalisations is crucial for bioacousticians to 
unveil structures in these signals, helping to address ecological and evolutionary ques-
tions. Automating this task would help to reach comparative scales for these measures 
(e.g. at individual or population-level) given how prohibitively time-intensive it can be to 
manually trace frequency contours.

With this study, we propose to take advantage of deep learning models in this regard, 
after they provided significant advances in the speech and music communities. Overall, 
performances are rather low as compared to what is common in the speech or music 
communities, in which pitch accuracies are most often above 95% (Kim et al. 2018; Riou 
et al. 2023). Several facts might explain this observation. Speech and music F0 estimation 

Table 4. Pitch accuracy for the crepe-consp. Model with and without temporal smoothing.
Taxon Without Viterbi With Viterbi Gain by using Viterbi

canids 0.73 0.74 0.004
spotted hyenas 0.94 0.91 −0.028
little owls 0.89 0.87 −0.019
bottlenose dolphins 0.93 0.91 −0.019
rodents 0.89 0.90 0.002
hummingbirds 0.63 0.63 0
disk-winged bats 0.73 0.73 0
Reunion grey white eyes 0.71 0.71 0
monk parakeets 0.30 0.30 0
lions 0.47 0.48 0.004
orangutans 0.51 0.51 0
long-billed hermits 0.42 0.40 −0.011
dolphins 0.24 0.24 0
La Palma chaffinches 0.28 0.28 0
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benchmarks are often with data recorded indoors if not fully synthetic, with a relatively 
high SNR (microphones being placed in proximity to sound sources and in quiet 
environments), and it took significant research efforts for algorithms to reach such scores 
despite an extensive knowledge of production mechanisms and great experimental 
control. The algorithms tested here result from this effort but were not designed to 
work in bioacoustic conditions, which include vocalisations that might lack harmonics, 
often recorded at a distance and outdoors, in the presence of other noise sources.

Scores are low as compared to tests on indoors near-field speech or music, but they are 
in most cases above twice the random baseline performance (0.8 % for the chroma 
accuracy), and crepe-consp. performs above three times the random baseline for all taxa. 
In this sense, we propose these automatic algorithms as a baseline for further develop-
ments, without which they are only reliable for signals with a relatively high F0 
salience/SNR.

Nonetheless, our results demonstrate that deep learning models systematically out-
perform traditional methods in bioacoustic F0 estimation (Figure 6), even for taxa not 
seen during training. Using this technology would therefore be advantageous to the field, 
similar to its benefits in other tasks such as vocalisation detection or classification. One of 
the advantages with training models is for instances where the first overtone has 
a stronger energy than the F0, which typically triggers harmonic jumps with traditional 
algorithms (e.g. this can occur in the effect of formants, a major component of speech 
Fitch 2000). We see from the median scores in Figure 5 that supervised models (crepe- 
consp. and crepe-heterosp.) have the smallest difference between pitch and chroma 
accuracies. This suggests less confusion between the first overtone and the fundamental, 
and thus that explicitly guiding models to predict the F0 even when the first overtone has 
a higher energy is effective.

Moreover, our experiments with self-supervised models show that knowledge can be 
gained even without labels, with scores being comparable to that of supervised models for 
species with salient vocalisations (Figure 6). This is especially relevant since the lack of 
annotated data is a major obstacle in using deep learning for bioacoustics (Stowell 2022). 
We expect that a semi-supervised training procedure, with only few labelled examples, 
would allow to improve training with less salient vocalisations, which so far pose 
challenges as compared to more salient ones. In this sense, combining training paradigms 
or algorithms outputs could be a lead for further developments (Bosch et al. 2016).

In our corpus characterisation, we propose a F0 salience metric which, based on 
simple spectral measurements, informs on the potential reliability of algorithms at 
estimating the F0. The visualisation of performance as a function of salience 
(Figure 7) demonstrates that for vocalisations that are highly tonal and with low 
background noise, algorithms can reach an accuracy of 90%, but this performance 
drops down to 35% with the more ‘noisy’ vocalisations (whether they are less tonal, 
exposed to more background noise or both). The lion dataset for instance has the 
highest mean SNR (Table 1), unsurprisingly since microphones were collar-mounted, 
but calls seem to contain deterministic chaos (Fitch et al. 2002), which makes their 
salience distribution relatively low (Figure 3). For these data, scores are around 50%, 
and the performance gap between PRAAT and deep learning models is relatively 
small (about 5% depending on the model). We encourage bioacousticians to evaluate 
their data in this regard, in order to anticipate the potential viability of automated F0 
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estimation for their specific use case. Future methodological research on bioacoustic 
F0 estimation should focus on vocalisations with low salience, as they are the most 
challenging to track.

For some taxa, the BASIC-pitch model gave reasonable performances, without 
having been trained on non-human signals. With such an architecture designed 
for polyphonic music (Bittner et al. 2022), there is a potential for analysing 
biphonic and overlapping calls, which this study does not tackle. It should be 
noted that pitch classifier architectures such as CREPE and PESTO could also be 
modified for multi-pitch tasks (Riou et al. 2023), and that their last layer’s 
activation can already inform on multiple F0 candidates. Regardless of the chosen 
approach, F0 trackers will only be fully ready for real-world applications when 
they are capable of managing multiple simultaneous F0s, as many bioacoustic 
applications require. Despite the fact that the proposed dataset contains only 
mono-F0 annotations, mixing up signals could easily emulate multiple-F0 scenar-
ios, and thus this corpus could still be suited to develop and evaluate multiple-F0 
trackers.

With the hope of fostering further methodological developments, we publish all 
acoustic signals and their associated F0 ground truths in an open repository. Being 
aware that some of the dataset’s ground truths might not perfectly match the actual 
oscillation frequency of vocal organs, since both manual and semi-automatic F0 annota-
tions can be biased (Roch et al. 2011; Herbst and Dunn 2019), we believe this corpus can 
still help in automating what a bioacoustician would annotate as F0 in a signal, and hence 
are worth investigating. Indeed, if one generic algorithm can yield the same F0 values as 
one that was specifically tuned for some signal, and if it can replicate what an annotator 
would have considered as F0, it will help researchers save time and extend their analysis 
to more vocalisations. Nonetheless, users of such methods should be aware that F0 
predictions can be corrupted by numerous phenomena such as non-linearities or back-
ground noise, and do not guarantee an accurate measurement of vocal organ vibration 
speed.

Nonetheless, before benchmarking more algorithmic procedures, future work using 
this dataset should focus on refining heuristics to filter label noise (especially resulting 
from automatic annotation procedures). Otherwise, fine-grained evaluations may be 
unreliable. To facilitate the application of our current experiments in other studies, 
we provide the Python code necessary to train and utilise pre-trained F0 estimators. 
The published Python interface allows to infer F0 values using a CREPE model 
trained on the whole dataset published here. Depending on the signals they wish to 
analyse, users can easily choose another model trained on a specific taxon, or set slow 
down/acceleration factors (to deal with infra- or ultra-sounds, or with rapid frequency 
sweeps such as bird trills), prediction time step, or prediction post-processing (among 
argmax, weighted argmax, or viterbi). Specifically, such tool can facilitate a large 
range of studies on non-human vocal behaviour, including to characterise frequency 
contours at the scale of species or communities (vocal repertoires), across individuals 
(individual signatures), or within individuals (across behaviours or during 
development).
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Notes

1. infrasonic sounds were pre-processed to be detectable despite this pitch floor (see Signal 
slow down/acceleration section).

2. https://github.com/mim-team/bioacoustic_F0_estimation.
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Data availability statement

The Python code used to reproduce experiments is available in an open source repository.2 It 
shows all packages used, in which version, and gives implementation details to evaluate existing 
algorithms or train deep learning models. Besides, the weights of models trained for this study, 
along with a ready-to-use Python interface, are also made available for researchers to use them in 
their own applications.

The data are accessible through this repository https://doi.org/10.5061/dryad.prr4xgxw8. The 
whole dataset is structured in a uniform way, with a sound file cut around each vocalisations (with 
some non-voiced padding), and a text file containing a list of time × frequency annotated values.
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