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Abstract
1.	 Assessing diversity of discretely varying behaviour is a classical ethological prob-

lem. In particular, the challenge of calculating an individuals’ or species’ vocal rep-
ertoire size is often an important step in ecological and behavioural studies, but 
a reproducible and broadly applicable method for accomplishing this task is not 
currently available.

2.	 We offer a generalizable method to automate the calculation and quantification of 
acoustic diversity using an unsupervised random forest framework. We tested our 
method using natural and synthetic datasets of known repertoire sizes that exhibit 
standardized variation in common acoustic features as well as in recording quality. 
We tested two approaches to estimate acoustic diversity using the output from 
unsupervised random forest analyses: (a) cluster analysis to estimate the number 
of discrete acoustic signals (e.g. repertoire size) and (b) an estimation of acoustic 
area in acoustic feature space, as a proxy for repertoire size.

3.	 We find that our unsupervised analyses classify acoustic structure with high ac-
curacy. Specifically, both approaches accurately estimate element diversity when 
repertoire size is small to intermediate (5–20 unique elements). However, for larger 
datasets (20–100 unique elements), we find that calculating the size of the area 
occupied in acoustic space is a more reliable proxy for estimating repertoire size.

4.	 We conclude that our implementation of unsupervised random forest analysis of-
fers a generalizable tool that researchers can apply to classify acoustic structure 
of diverse datasets. Additionally, output from these analyses can be used to com-
pare the distribution and diversity of signals in acoustic space, creating opportuni-
ties to quantify and compare the amount of acoustic variation among individuals, 
populations or species in a standardized way. We provide R code and examples to 
aid researchers interested in using these techniques.
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1  | INTRODUC TION

Many animals use vocal signals to transmit information and mediate 
a wide range of social behaviours, from resource competition to at-
tracting mates (Catchpole & Slater, 2003; Gerhardt & Huber, 2002; 
Janik, 2009; Kroodsma & Miller, 1996; Payne, 1986). Owing to the 
ubiquity and ecological importance of acoustic signalling, quanti-
fying and comparing animal vocalizations is a major part of animal 
behaviour and communication systems research. Data from several 
studies suggest that signals often fall into distinct categories based 
on their acoustic structure (e.g. birds, Kroodsma et al., 1982; ceta-
ceans, Janik, 2009; primates, Owren et al., 1992). Such categories 
are often observed at the species level when conspecifics use a 
shared repertoire of distinct acoustic signals that are associated with 
different contexts (Marler, 1982; Seyfarth & Cheney, 2003). Distinct 
categories can also arise within a signal type, as when an individ-
ual uses several signal variants that have the same functional role 
(e.g. the song repertoires of many songbirds comprise multiple song 
types, Catchpole & Slater, 2003).

Classifying or quantifying variation in animal signals is funda-
mental to many questions in animal communication. For example, 
metrics derived from measuring the number of unique elements or 
vocalizations produced by an individual, such as repertoire size or 
acoustic diversity, have been shown to correlate with quality indi-
cators, including territory size, cognitive ability, brain morphology 
and levels of stress during early stages of development (Devoogd 
et al., 1993; Podos et al., 2009; Sewall et al., 2013). At the popula-
tion level, differences in acoustic signals can facilitate species rec-
ognition (e.g. amphibians, Ryan,  1985) and can play an important 
role in speciation by promoting isolation between sympatric groups 
(e.g. crickets, Mullen et al., 2007; birds, Mason et al., 2017). When 
assessing entire ecosystems, acoustic diversity or the amount of 
variation within and among populations’ vocal repertoires, can pro-
vide a metric to assess ecosystem health or demographic aspects 
of communities (Laiolo et al., 2008; Pijanowski et al., 2011; Sueur, 
Pavoine, et al., 2008). For these reasons, quantifying acoustic diver-
sity is often an important step in addressing questions and testing 
hypotheses regarding the social and ecological factors influencing 
signal function and evolution.

Classifying signals can be difficult or time-consuming because 
acoustic variation across environments, individuals or even different 
renditions of a signal by the same individual can be considerable. 
Furthermore, not all variation in acoustic structure is discrete. Often, 
acoustic signals do not fall into distinct categories, but rather exhibit 
continuous variation on multiple axes, and therefore can be difficult 
to classify (Wadewitz et  al.,  2015). Within behavioural ecology, a 
common approach for quantifying variation among signals is to esti-
mate repertoire size or element diversity. In this study, we consider 
a repertoire to be the complete set of discrete vocalization types, 
hereafter elements, used by an individual or species. Accordingly, 
as elements are subunits of which repertoires are composed, we 
define element diversity as the number of unique elements a rep-
ertoire contains (this differs from ecological definition of diversity, 

which describes both the number and evenness of entities in the en-
vironment). While it is theoretically possible to count every discrete 
acoustic element in a dataset of vocal elements, for animals with 
large repertoire sizes it is common to subsample a species repertoire 
and use either accumulation curves or a capture–recapture analysis 
to estimate repertoire size (Catchpole & Slater,  2003; Garamszegi 
et al., 2005; Kershenbaum et  al.,  2015; Wildenthal,  1965; but see 
Botero et al., 2008). However, this approach requires first manually 
classifying elements or vocalizations, a process that can be subjec-
tive and may become unwieldy for species with large repertoires or 
multispecies studies. In recent years, several techniques have been 
developed which improve upon these methods (e.g. Kershenbaum 
et al., 2015; Peshek & Blumstein, 2011), including approaches that 
use information theory-based approaches to quantify individuality 
of vocal signals (Beecher,  1989; Freeberg & Lucas,  2012; Linhart 
et  al.,  2019). Additionally, methods have been developed to help 
distinguish among more graded element types (e.g. Wadewitz 
et al., 2015). Nevertheless, the general challenge of quantifying rep-
ertoire size still exists with many of these methods: human-based 
classification is both time-intensive and unavoidably subjective, and 
researchers would benefit from an automated and generalizable 
method that would enable rapid, objective estimation of repertoire 
size.

In passive acoustic monitoring and quantification of sound-
scapes, there is an emphasis on creating fully automated approaches 
for classification and measurement of acoustic signals. One such ap-
proach, acoustic indices, has been used to quantify ecosystem level 
to individual behavioural variation (Sueur et al., 2014). Such metrics 
have become increasingly important to ecological assessment and 
monitoring (Gibb et  al.,  2019); however, they are often calculated 
at scales that are more appropriate to ecosystem or community 
ecology.

Unlike soundscape analysis, measuring acoustic diversity on the 
species or individual level requires quantifying differences between 
discrete elements. Machine learning offers an automated and objec-
tive approach for such classification tasks, and is a powerful tool for 
detecting and distinguishing vocal signals (e.g. Acevedo et al., 2009; 
Briggs et al., 2013; Hershey et al., 2017; Stowell et al., 2019). In par-
ticular, unsupervised machine learning approaches offer several 
advantages that enhance their value for assessing behavioural diver-
sity, namely in that they do not require a labelled training dataset or a 
priori assumptions about the structure of data (Valletta et al., 2017). 
Unsupervised techniques can also determine which acoustic pa-
rameters contribute most to classification or splitting data into 
classes, therefore relieving researchers from the need to make po-
tentially subjective choices about feature selection (Breiman, 2001). 
Unsupervised analyses have shown high performance in the classi-
fication of vocal signals to species as compared to other approaches 
(Keen et al., 2014), including in the case of large datasets (Stowell & 
Plumbley, 2014), and there appears to be much promise in applying 
these techniques to evaluate acoustic diversity (Ulloa et al., 2018). 
However, a widely applicable tool for assessing acoustic diversity at 
the individual, species or community-level is not readily available.
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In this paper, we present and evaluate the use of unsupervised 
machine learning for classifying and quantifying acoustic diversity 
in animal signals. Specifically, we examine two approaches for es-
timating repertoire size: (a) a clustering method to identify discrete 
numbers of acoustic units and (b) an acoustic area calculation as a 
proxy for repertoire size. Here, acoustic area refers to the amount 
of space inside the boundary encompassing all signals in a dataset 
within the acoustic feature space. We evaluate the accuracy of 
these approaches on multiple datasets with known acoustic struc-
ture. Three unique aspects of our approach help ensure this method 
will be highly generalizable to diverse acoustic signals. First, we test 
algorithm performance using both field-recorded and synthesized 
acoustic datasets with known sample sizes and variation, allowing 
us to evaluate our method under a variety of conditions. Second, we 
incorporate several of the most commonly used acoustic parame-
ters for characterizing signal structure. Third, we used test datasets 
with realistic distributions of variation and background noise, mak-
ing it possible to evaluate the robustness of this approach to vari-
able acoustic structures and across a range of recording scenarios. 
We also provide R code for implementing this approach. Our results 
suggest that this technique offers a powerful tool for researchers to 
quantify a diversity across taxa and communities.

2  | MATERIAL S AND METHODS

We estimated acoustic diversity for a collection of natural and syn-
thetic acoustic signals using a machine learning approach (random 
forest) and evaluated the performance of this method following the 
workflow in Figure 1. This process involved creating sets of synthetic 
acoustic signals with known repertoire sizes and known amounts of 
structural variation, extracting acoustic features from these signals, 
running unsupervised random forest analyses to calculate pairwise 
distances between signals and estimating repertoire size using both 
cluster analysis and the size of the acoustic feature space (i.e. the 
range encompassing all possible spectrotemporal variation in signals, 
hereafter referred to as acoustic space). We also evaluated the ef-
fects of variation in repertoire size and acoustic structure on the ac-
curacy of our analyses.

Using a random forest approach was integral to our workflow 
for several reasons. A key advantage of random forest is its ability 
to determine which feature measurements best divide data into dis-
tinct categories; therefore, it is possible to use a large number of 
features and allow the algorithm to determine which are most use-
ful for a given dataset. Random forest also offers several additional 
advantages over other machine learning techniques: it is robust to 
collinearity, outliers and unbalanced datasets, is efficient even with 
large and highly multidimensional datasets, can be used in both a 
supervised and unsupervised manner, can handle non-monotonic 
relationships, ignores non-informative variables, produces low bias 
estimates, computes proximity of observations which can be used 
for representing trait spaces and can be used to identify variables 
that contribute most to finding structure within a dataset (Valletta 

et  al.,  2017). For these reasons, combining random forest with a 
large suite of automated acoustic feature measurements holds much 
promise as a generalizable tool for acoustic classification tasks.

2.1 | Test datasets

We evaluated the performance of our proposed method using 
four datasets—annotated field recordings of long-billed hermits 
Phaethornis longirostris, annotated laboratory recordings of budg-
erigars Melopsittacus undulatus and two collections of synthetic 
datasets that were modelled on natural vocalizations of these 
two species (see Table  1 for a summary of datasets and Figure  2 
for sample spectrograms). This enabled us to assess performance 
using vocal signals collected from live birds that reflect the natu-
rally occurring variation between individuals, as well as datasets 
comprising signals with distinct spectrotemporal properties, as the 
vocalizations used by these species are considerably different from 
one another (see Supporting Information). Another advantage of 
using vocalizations from long-billed hermits and budgerigars was 
the availability of large datasets of live recordings from numerous 
individuals of each species that were previously labelled by human 
experts, which provided ground truth with which to test our pro-
posed method. The use of 96 synthetic datasets as test cases also al-
lowed us to conduct repeated tests of algorithm performance under 

F I G U R E  1   Flowchart of study design. White boxes represent 
data analysis steps and shaded boxes represent evaluation and 
validation steps
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different conditions and to test whether repertoire size can be ap-
proximated using acoustic area. Such thorough assessment would 
not be feasible with field or laboratory recordings, as the process 
of collecting, annotating and measuring vocal repertoires is prohibi-
tively time-consuming. Additionally, a primary aim of using a large 
number of labelled test datasets was to demonstrate that our ap-
proach can accurately approximate human analysis on diverse data-
sets, and to allow others to minimize time spent on manual analysis 
in future acoustic studies.

Field recordings of long-billed hermits were collected from 43 
known individuals in wild populations at La Selva Biological Station, 
Costa Rica (10°, 25′N; 84°, 00′W), between 2008 and 2017. Males 
in this species live in territorial leks that exhibit local songs that are 
shared by subgroups of individuals (i.e. singing neighbourhoods) 
within a lek (Araya-Salas & Wright, 2013; see Supporting Information 
for further details). For this study, we used songs recorded from 16 
leks (mean ± SE songs per group = 3.1 ± 0.51). Because the song 
types used by long-billed hermits change over time, it was possible 
to use songs recorded from the same lek in different years to com-
pile a sample of 50 unique song types. We visually assessed spec-
trograms of all signals to verify that song types exhibited distinct 
spectrotemporal structures. To create the test dataset for this study, 
we identified the 50 song types that had the most samples, and se-
lected the 10 recordings with the highest signal-to-noise ratio for 
each type, yielding a dataset of 500 signals.

Laboratory recordings of budgerigar contact calls were col-
lected between July and November 2010 from a laboratory pop-
ulation originally acquired from a captive breeder. Individual 
budgerigars typically have repertoires of two to five acoustically 
distinct contact call types that are shared with some other individu-
als within their flock. Contact calls were recorded from 38 different 
individuals that were temporarily isolated from their flock mates 
in a home-made acoustic chamber constructed of an Igloo cooler 
lined with acoustic foam with a clear plexiglass door as described 

in Dahlin et al. (2014). Trained research assistants visually assessed 
spectrograms made from wav files and assigned calls to classes 
using Raven 1.3 (Cornell Lab of Ornithology). Call classification was 
subsequently verified using a discriminant function analysis as de-
scribed in Dahlin et al. (2014). We then randomly selected 35 con-
tact calls from each of 15 unique call types, resulting in a dataset 
of 525 signals.

2.2 | Synthetic data creation

To create the synthesized song datasets used for testing, we first 
extracted the dominant frequency contours, defined as the curves 
that track changes in the dominant frequency of signal over time, 
of the natural bird vocalizations (long-billed hermit songs and 
budgerigar calls). We then synthesized frequency contours similar 
to those of the exemplar species and saved these signals as audio 
clips using the r soundgen package (Anikin, 2019). We allowed the 
synthetic sounds to vary in three features: duration (short: 150 ms; 
long: 300 ms; defined as the length of the continuous tonal signal 
within the spectrogram), harmonic content (low and high; defined 
as the amount of power in harmonic bands above the fundamental 
frequency) and background noise (low: 20 dB signal-to-noise ratio; 
high: 2 dB signal-to-noise ratio). To test the ability of our method 
to estimate repertoire size and to determine whether this can be 
approximated by calculating the area occupied in acoustic space, 
we synthesized datasets with repertoire sizes of 5, 10, 15, 20, 50 
or 100 unique elements. Each element type was represented by 10 
examples. For each repertoire size, we used all possible combina-
tions of duration, harmonic content and background noise, result-
ing in 48 synthetic datasets for both long-billed hermit songs and 
budgerigar calls (Table  1). Sample spectrograms of signals from 
each dataset are shown in Figure 2. See Supporting Information 
for further details of data collection and synthesis.

Description
Recording 
type

Number of 
datasets

Unique elements 
in repertoire

Examples of 
each element

Long-billed hermit songs Field 1 50 10

Budgerigar calls Laboratory 1 15 35

Synthetic long-billed 
hermit songs

Synthetic 48 8 × 5 10

8 × 10

8 × 15

8 × 20

8 × 50

8 × 100

Synthetic budgerigar 
calls

Synthetic 48 8 × 5 10

8 × 10

8 × 15

8 × 20

8 × 50

8 × 100

TA B L E  1   Summary of test datasets 
used to evaluate performance
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2.3 | Acoustic feature measurements

We collected a suite of common acoustic feature measurements from 
each audio clip. We first applied a 500 Hz high-pass filter to all audio 
clips to remove low-frequency noise, and then created spectrograms 
for each sample clip using 300-point FFT with a Hann window and 
90% overlap. From these spectrograms, we extracted 179 descrip-
tive statistics of mel frequency cepstral coefficients (MFCCs; Lyon & 
Ordubadi, 1982, sensu Salamon et al., 2014) and 28 acoustic param-
eters using the r packages warbler and seewave (Araya-Salas & Smith-
Vidaurre, 2017; Sueur, Aubin, et al., 2008). All features we used are 
commonly used metrics in bioacoustics analyses and are described in 
further detail in the Supporting Information. We also calculated two 
pairwise distance matrices for every dataset: one using spectrogram 
cross-correlation (SPCC; Clark et al., 1987) and one using dynamic time 
warping (DTW; Wolberg, 1990). We used classical multidimensional 

scaling (MDS) to translate the SPCC and DTW distance matrices into 
five-dimensional space, and used the axis coordinates for each sample 
as additional feature measurements (i.e. five SPCC MDS coordinates 
and five DTW MDS coordinates per sample). Together, this resulted 
in a vector of 217 feature measurements for each signal. We collated 
the feature vectors for each audio clip into a single matrix for each 
dataset, then removed any collinear measurements, applied a Box-
Cox transformation to improve normality, and scaled and centred all 
feature values. The resulting matrix was used as the input into the 
supervised and unsupervised random forest models.

2.4 | Supervised random forest analyses

To evaluate the ability of random forest to classify signals into the 
correct categories, we used a supervised random forest created with 

F I G U R E  2   Spectrograms with examples from each dataset. Example spectrograms showing signals in the four datasets used to test 
algorithm performance, including (a) field recordings of long-billed hermit songs, (b) laboratory recordings of budgerigar songs, (c) synthetic 
long-billed hermit songs with added noise and (d) synthetic budgerigar songs with added noise
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the randomForest r package (Liaw & Wiener, 2002), to classify the 
signals in each data. Here, ‘supervised’ denotes that the random for-
est model was created using a labelled dataset; in our study, field 
and laboratory recordings were labelled by human experts and syn-
thetic data were labelled by software. We assessed how well the 
supervised random forest models were able to classify signals from 
the same category together using the out-of-bag error estimate 
(Breiman, 2001), which is an unbiased means of assessing predic-
tion performance (Ljumović & Klar,  2015). These analyses served 
as a proof of concept, as they confirmed that models constructed 
from the selected acoustic features could accurately assess similar-
ity among signals and allowed us to evaluate the distribution of error 
rates for the test datasets described in Table 1. We expect that re-
searchers using this method will have unlabelled data and therefore 
will only apply unsupervised random forest models.

2.5 | Unsupervised random forest analyses

To determine whether our method can be used to estimate reper-
toire size or acoustic diversity for unlabelled data, we created an 
unsupervised random forest model for each dataset listed in Table 1 
using the randomForest r package (Liaw & Wiener, 2002). Unlike the 
supervised random forest approach, an unsupervised random for-
est can be used to find underlying structure within unlabelled data 
(Breiman, 2001). This approach also produces dissimilarity measure 
between all samples, which can be used to identify groupings within 
data. Although all test datasets were labelled and repertoire sizes 
were known, in this step we ignored this information in order to sim-
ulate the workflow that other researchers might use for their data. 
For each dataset, we constructed an unsupervised random forest 
model using 10,000 decision trees that were built using the unla-
belled feature measurements. We then used the output of each un-
supervised model to obtain pairwise distances between all samples 
within each dataset.

2.6 | Performance evaluation

We used several metrics to evaluate how well our method could as-
sign samples into different classes. First, we assessed performance 
of each supervised random forest model by calculating out-of-bag 
error rates, which provided a misclassification rate for each dataset. 
Using these values, we examined whether duration of audio clips 
(long vs. short), harmonic content (high vs. low), level of background 
noise (high vs. low) or number of discrete elements influenced the 
ability of models to assign signals to the correct class.

We evaluated how well the unsupervised random forest could 
measure acoustic diversity using two approaches: by estimating 
number of unique elements (i.e. repertoire size) in each dataset and 
by calculating the area of the acoustic space occupied by all sig-
nals in a dataset. To estimate repertoire size, we applied partition-
ing around medoids (a variation of k-means clustering; Kaufman & 

Rousseeuw, 2009) to the pairwise distance matrix returned by the 
unsupervised random forests for each dataset. For each dataset, 
we calculated silhouette width to determine the optimal number of 
clusters (see Figure S4). Using the labels that were omitted during 
the design of the unsupervised models, we then calculated the dif-
ference between the optimal number of clusters (i.e. the estimated 
repertoire size) and the true repertoire size. We also calculated the 
classification accuracy by assigning each cluster in a dataset a label 
corresponding to the signal type that was most frequently placed in 
that cluster, and then dividing the total number of correctly assigned 
samples by the number of samples in the dataset. Additionally, we 
calculated the adjusted Rand index, which is a metric of how often 
samples of the same type are assigned to the same cluster and dif-
ferent types assigned to different clusters (Rand, 1971). This value 
represents the similarity of data points within each cluster and can 
range between 0, indicating completely random classification, and 1, 
indicating that assigned classes perfectly match labels.

To create the acoustic space for each dataset, we used multi-
dimensional scaling to transform the pairwise distance matrix pro-
duced by the unsupervised random forest. We then calculated 
acoustic area as the 95% minimum convex polygon (i.e. excluding 
the proportion of outliers above 95%) of these points. We used 
Spearman's rank correlation to test whether acoustic area increased 
with true repertoire size.

Lastly, in order to visualize how well the unsupervised analy-
ses clustered distinct signal types, we used t-distributed stochastic 
neighbour embedding (t-SNE) dimensionality reduction to display all 
samples in two dimensions (Maaten & Hinton, 2008). All statistical 
analyses were conducted using the r packages cluster, tsne, mass 
and adehabitatHR (Calenge, 2006; Donaldson, 2016; Maechler et al., 
2018; Venables & Ripley, 2002). See Supporting Information for fur-
ther details of analyses.

3  | RESULTS

3.1 | Supervised random forest performance

Out-of-bag error was below what would be expected by chance 
(see Supporting Information) for all supervised random forest 
models—field recordings of long-billed hermits: 0.04; laboratory 
recordings of budgerigars: 0.093; synthetic long-billed hermit data-
sets (mean ± SE): 0.02 ± 0.043; and synthetic budgerigar datasets: 
0.049  ±  0.017. However, we observed that certain signal charac-
teristics in our synthetic call sets influenced error rates. Namely 
synthetic long-billed hermit songs that have low harmonic content 
or high background noise have higher out-of-bag error rates, and 
typically error rates were higher in long-billed hermits than in budg-
erigars. Synthetic datasets with higher numbers of discrete element 
types also had higher out-out bag error rates (Figure  3). Variable 
importance rankings indicating which feature measurements were 
most useful in splitting data into distinct classes were different for 
each of the four dataset types used for testing (Table S1).
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3.2 | Unsupervised random forest performance and 
calculating acoustic diversity

We observed that our estimates of repertoire size were most ac-
curate for synthetic datasets that contained 20 or fewer unique 
elements (Figure 4a). Classification accuracy was often above 90% 
for datasets with five unique elements, and decreased as the true 
number of discrete elements in a dataset increased, reaching around 
60% for datasets with 100 unique elements (Figure 4b). Similarly, ad-
justed Rand indices were relatively high for synthetic datasets with 
small numbers of unique elements, and decreased among datasets 
as the number of unique elements increased (Figure 4c). An excep-
tion to this pattern was the synthetic budgerigar datasets with five 
unique elements, which had lower adjusted Rand indices because 
data were often clustered into fewer than five classes. The scatter-
plots in Figure 5a–d illustrate the ability of the unsupervised analysis 
to cluster synthetic signals of the same class together.

When analysing the live budgerigar calls, our approach cor-
rectly estimated that there were 15 unique signal types in the data-
set. However, all calls of the same element type were not always 
assigned to the same cluster (Figure 4c), which is reflected by the 
classification accuracy of 79.6% and adjusted Rand index of 0.615. 
The unsupervised analysis of field-recorded long-billed hermit songs 
incorrectly estimated 75 unique signal types in the dataset, which 
was the maximum allowed number of clusters during our testing, 
rather than the true number of 50 unique signal types. However, the 
classification accuracy for this dataset was 76.4%, and the adjusted 

Rand index was 0.73, indicating that signals of the same class were 
often clustered together. Scatterplots showing the unsupervised 
clustering of live bird datasets are shown in Figure 5e,f.

When acoustic area was used to estimate repertoire size, we ob-
served a significant, positive correlation between acoustic area and 
the number of discrete elements. In addition, the acoustic area met-
ric estimated repertoire size with similar accuracy across all values 
of true repertoire size (Figure 6). We observed this same pattern for 
synthetic datasets of long-billed hermit songs and budgerigar calls 
(Spearman correlation: budgerigars: r  =  0.91, N  =  99, p  <  0.0001; 
long-billed hermits: r = 0.95, N = 99, p < 0.0001; Figure 6).

4  | DISCUSSION

Our goal was to provide researchers with a flexible, unsupervised 
method for quantifying diversity in acoustic signals, a general prob-
lem encountered when evaluating the vocal repertoires of indi-
viduals, populations or species. We aimed to replicate the process 
researchers might use when assessing variation in unlabelled data 
and tested our method on 98 datasets containing between five and 
100 unique elements. We find that unsupervised learning paired 
with either cluster analyses or acoustic area calculations can ap-
proximate small and intermediate sample sizes well. In datasets with 
many discrete elements, however, quantifying the size of the area 
occupied in acoustic space may offer a more accurate alternative 
to estimating repertoire size than cluster analyses. Below, we make 

F I G U R E  3   Out-of-bag error rates for 
supervised random forest models created 
for synthetic datasets with varying 
(a) duration, (b) harmonic content, (c) level 
of background noise and d) repertoire 
size. Black violin plots show results for 
synthetic budgerigar and grey plots 
results for synthetic long-billed hermit 
datasets
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specific recommendations about which signal characteristics might 
influence the accuracy of estimating acoustic diversity under differ-
ent conditions, repertoire sizes and acoustic features.

4.1 | Supervised analyses

Supervised analyses allowed us to verify that random forests can 
accurately identify underlying patterns in acoustic data and to 
confirm that our test data had the expected structure. Our results 

suggest that signal duration (short vs. long) and harmonic content 
(low vs. high) largely do not affect classification accuracy in most 
cases (Figure 3). Interestingly, synthetic long-billed hermit songs that 
have low harmonic content or high background noise suffered from 
higher out-of-bag error. Additionally, in almost all cases, synthetic 
long-billed hermit songs exhibited higher out-of-bag error rates than 
synthetic budgerigar songs. A likely explanation is that the harmonic 
content of natural long-billed hermit songs provides acoustic struc-
ture that aids in classification among element types, and low power 
content in harmonic bands of our synthetic songs or high back-
ground noise may mask this helpful feature. Harmonic structure is 
known to help conspecifics discern fine differences in signals and 
has been shown to encode individual identity in some species (e.g. 
penguins, Aubin et al., 2000; humans, Imperl et al., 1997). As for the 
higher classification error for hermit elements in general, it is pos-
sible that the feature measurements we used might not be as ef-
fective at identifying the spectrotemporal variation for this species 
compared to budgerigars. Hence, it is likely that our simulation un-
derestimated the overall discriminatory power of the methods. For 
synthetic data, we observed that error rates increased with true rep-
ertoire size, suggesting that the method is less effective at finding 
structure in data when there are large numbers of discrete elements. 
This decrease in discriminatory power with increasing repertoire size 
might be due to a saturation of the acoustic space.

4.2 | Unsupervised estimation of repertoire size

Cluster analysis using output from unsupervised random forest mod-
els showed that it was possible to estimate the true number of discrete 
elements in synthetic datasets with little error when the number of 
discrete elements was equal to or <20 (Figure 4a). For datasets with 
50 or 100 discrete elements, unsupervised clustering often estimated 
repertoire size as being much higher than its true value. One possi-
ble reason for this may be overfitting during clustering, that is, when 
subsets of samples of the same signal type are assigned to separate 
clusters, which can occur when there is high similarity among a subset 
of samples in a class. Additionally, higher inaccuracy is expected as 
more unique elements are introduced when the acoustic space be-
comes saturated. Classification accuracy and adjusted Rand indices 
were also higher for datasets with few discrete elements, and both 
metrics were consistently slightly higher for synthetic long-billed her-
mit datasets relative to synthetic budgerigar datasets (Figure 4b,d). 
This might be explained by the fact that the synthetic long-billed her-
mit exhibits more pronounced differences between classes than the 
synthetic budgerigar calls, which might allow for classes to be more 
easily distinguished. One possible explanation for this is that the long-
billed hermit recordings from which synthetic signals were created 
contained diverse songs from many different leks, producing more 
distinct signals than the laboratory population of budgerigars.

For the field- and laboratory-recorded datasets, we also observed 
limitations of the clustering method. Although cluster analysis ac-
curately estimated small repertoire sizes for the synthetic data, for 

F I G U R E  4   Unsupervised performance varies with number 
of unique elements in synthetic datasets. Plots of results from 
cluster analysis of unsupervised random forest output showing 
(a) estimated repertoire size, (b) classification accuracy and 
(c) adjusted Rand index versus true repertoire size. White and 
black boxes represent results from synthetic budgerigar calls and 
synthetic long-billed hermit songs respectively
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the laboratory-recorded budgerigar dataset, which included only 15 
unique element types, signals of the same class were sometimes placed 
in separate clusters. This could be one shortcoming of using clustering, 
as the algorithm may not assign the correct labels to every signal in a 
dataset, although we observed that classification accuracy was rather 
high overall (80%). For the field-recorded long-billed hermit dataset 
with 50 unique elements, the unsupervised analysis overestimated the 
repertoire size to be 75, likely due to overfitting as described above. 
However, we note that this analysis aimed to distinguish among signals 
from the same functional category, as opposed to signals from different 

functional categories across an entire repertoire (e.g. songs, alarm calls, 
etc.). Clustering similar song types is expected to be the more difficult 
task given the high acoustic similarity within a functional category.

4.3 | Unsupervised calculation of acoustic 
space occupancy

Our second approach of quantifying acoustic diversity by calculating 
the size of the acoustic area occupied in acoustic space avoids the 

F I G U R E  5   Examples of unsupervised clustering of elements within datasets. To illustrate the ability of our method to cluster similar 
element types together within datasets of different sizes and with different signal properties, we show plots of six datasets used in this 
study: (a) synthetic budgerigar calls with 20 unique elements, short duration, low harmonic content and low background noise (clustered 
into 20 groups), (b) synthetic long-billed hermit dataset with 20 unique elements, short duration, high harmonic content and low background 
noise (clustered into 20 groups), (c) synthetic budgerigar dataset with 50 unique elements, long duration, low harmonic content and low 
background noise (clustered into 46 groups), (d) synthetic long-billed hermit dataset with 50 unique elements, short duration, high harmonic 
content and low background noise (clustered into 47 groups), e) live budgerigar dataset with 15 unique elements (clustered into 15 groups) 
and (f) live long-billed hermit dataset with 50 unique elements (clustered into 75 groups). We used t-SNE to display all data points in two 
dimensions, thus creating a two-dimensional acoustic space. Each point represents a single signal within a dataset, and the unique colours 
and shapes of points indicate the distinct element types within a dataset. Ellipses represent clusters assigned by the algorithm as it aimed to 
group identical element types together. In some cases, ellipses are too small to be visible within plots
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issue of needing to assign signals to discrete classes. For both syn-
thetic budgerigar and long-billed hermit datasets, acoustic area was 
positively correlated with the number of discrete elements in a data-
set (Figure 6). Additionally, unlike the clustering approach, acoustic 
area estimates were robust to large repertoire sizes. We suggest 
that this may be a useful technique for quantifying diversity in spe-
cies anticipated to have large repertoires, high element diversity or 
those in which vocalizations may change over time (e.g. budgerigars, 
Dahlin et  al.,  2014), as it precludes the need for defining discrete 
categories which may be difficult to define statistically in a crowded 
acoustic space. We note, however, that making relative comparisons 
between different datasets requires that all data points are analysed 
concurrently; acoustic area is defined by its composite data points 
and has no inherent comparability between different datasets.

4.4 | Potential Uses

Both methods we tested allowed for accurate estimates of repertoire 
size; however, we see promising attributes and limitations of both 
approaches. We observed that cluster analysis was particularly use-
ful for assessing small or intermediate repertoire sizes. Interestingly, 
previous work has shown that parrot repertoires often contain 

10–15 elements (Bradbury,  2003) and that most songbird reper-
toires typically include below 20 elements or song types (Byers & 
Kroodsma, 2009; Macdougall-Shackleton, 1997; Snyder & Creanza, 
2019). Repertoires can refer both to total signal repertoire in a spe-
cies (signal ethogram) and total number of signals of a certain type 
within an individual (song repertoire or call repertoire). We foresee 
the clustering of signals as being especially useful in this case.

We envision that acoustic space is an especially promising 
method to estimate and compare acoustic diversity across individ-
uals, populations or species. Previous work has shown that acoustic 
diversity may correspond to a number of ecological characteristics, 
including viability of populations (Laiolo et al., 2008), local habitat 
structure (Morton, 1975; Boncoraglio & Saino, 2007), social system 
structure and complexity (Dunbar, 1998; Freeberg, 2006; elephants, 
Leighton,  2017), and is also linked to social and sexual signalling 
(Tobias & Seddon,  2009; Wilkins et  al.,  2013). Our acoustic space 
approach is well-suited for large comparative analyses, particularly 
in cases in which repertoire sizes are unknown or anticipated to be 
large, and therefore cluster analysis may not be appropriate. In ad-
dition, all species or individuals can be compared in the same acous-
tic space, allowing for comparable estimates of acoustic area for all 
species. Although the analyses presented here were conducted in 
a two-dimensional acoustic space, future analyses could calculate 
multidimensional acoustic volumes (as opposed to 2-D acoustic 
areas).

New algorithms such as UMAP and other data visualization 
procedures may improve classification for grouping elements 
into distinct clusters in a two-dimensional feature space (Goffinet 
et al., 2019; Sainburg et al., 2019). Therefore, such approaches may 
enable researchers to more accurately determine the numbers of 
unique elements within an animal's repertoire based on spatial sepa-
ration. However, similar to our cluster analysis findings, these meth-
ods could still be limited by the number of groupings that can be 
delineated in a two-dimensional space and thus may be more appro-
priate for small sample sizes. In general, the challenge of assigning 
signals to categories is expected to scale in difficulty as the number 
of classes increase and the acoustic space becomes saturated. This 
inherent challenge cannot be entirely avoided, but certain aspects 
of our acoustic area technique help to mitigate this issue, namely 
by comparing how entire repertoires occupy acoustic space as an 
estimate of repertoire size rather than counting or comparing num-
bers of discrete groupings to calculate the actual repertoire size. 
Acoustic space may not linearly correlate with the number of dis-
crete elements in a dataset, but we can use this approach to capture 
differences between large versus small repertoires across species, 
populations or individuals. Researchers should be careful if the in-
tent is to compare the size, location, distance or overlap of element 
groupings derived from UMAP and other data visualization proce-
dures as these techniques focus on maximizing local separation. 
Therefore, global structure can be lost, and broad spatial compari-
sons might not be accurate.

The feature measurements that were most useful in the un-
supervised random forest approach varied among test datasets, 

F I G U R E  6   Datasets with more discrete elements have larger 
distributions in acoustic space. As repertoire size increases, the 
distribution of samples in acoustic space occupies a larger area for 
(a) synthetic budgerigar calls and (b) synthetic long-billed hermit 
songs. Acoustic space values have been squared to better illustrate 
differences between values on a small scale
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presumably because different signal types were best distinguished 
by different features (Table S1). For most datasets, the MFCC de-
scriptive statistics were consistently among the most important fea-
tures for creating supervised random forest models. Interestingly, 
for the laboratory-recorded budgerigar calls, the SPCC MDS coordi-
nates were among the highest ranking features. We expect that be-
cause these recordings were collected in a controlled environment 
with little background noise that the SPCC analysis could detect 
small differences among call types that were not visible in the syn-
thetic or field-recorded data.

The ability for the analysis to detect this latent variation without 
requiring us to specify a priori which features we expected to vary 
exemplifies one of the primary strengths of random forest analysis. 
For this reason alone, we expect this approach may permit a high 
degree of adaptability to diverse acoustic datasets. The ability of this 
method to accurately evaluate acoustic diversity among disparate 
signal types also suggests that this method can be readily applied to 
vocalizations from other species or taxa. Overall, given the relatively 
low out-of-bag error rates, we were confident that constructing ran-
dom forest models in an unsupervised manner would be a useful tool 
for assessing acoustic diversity.

5  | CONCLUSIONS

We build upon previous work that has demonstrated the utility of 
unsupervised analyses for classifying acoustic signals and propose 
a novel combination of techniques for quantifying vocal diversity 
and/or measuring differences among individuals, species and eco-
systems. This method can be used to characterize vocalizations, 
either by estimating repertoire size or calculating acoustic space oc-
cupancy. By testing this method under diverse conditions, we hope 
to offer researchers a robust and generalizable method for acoustic 
analyses. Most importantly, we include R code to make these tools 
accessible to biologists.
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