dfDTW calculates acoustic dissimilarity of dominant frequency contours using dynamic time warping. Internally it applies the dtwDist function from the dtw package.

dfDTW(X = NULL, wl = 512, wl.freq = 512, length.out = 20, wn = "hanning", ovlp = 70,
bp = c(0, 22), threshold = 15, threshold.time = NULL, threshold.freq = NULL, img = TRUE,
parallel = 1, path = NULL, ts.df = NULL, img.suffix = "dfDTW", pb = TRUE,
clip.edges = TRUE, window.type = "none", open.end = FALSE, scale = FALSE,
frange.detec = FALSE,  fsmooth = 0.1, adjust.wl = TRUE, ...)

Arguments

X

object of class 'selection_table', 'extended_selection_table' or data frame containing columns for sound file name (sound.files), selection number (selec), and start and end time of signal (start and end). The output of manualoc or autodetec can be used as the input data frame.

wl

A numeric vector of length 1 specifying the window length of the spectrogram, default is 512.

wl.freq

A numeric vector of length 1 specifying the window length of the spectrogram for measurements on the frequency spectrum. Default is 512. Higher values would provide more accurate measurements.

length.out

A numeric vector of length 1 giving the number of measurements of dominant frequency desired (the length of the time series).

wn

Character vector of length 1 specifying window name. Default is "hanning". See function ftwindow for more options.

ovlp

Numeric vector of length 1 specifying % of overlap between two consecutive windows, as in spectro. Default is 70.

bp

A numeric vector of length 2 for the lower and upper limits of a frequency bandpass filter (in kHz). Default is c(0, 22).

threshold

amplitude threshold (%) for dominant frequency detection. Default is 15.

threshold.time

amplitude threshold (%) for the time domain. Use for dominant frequency detection. If NULL (default) then the 'threshold' value is used.

threshold.freq

amplitude threshold (%) for the frequency domain. Use for frequency range detection from the spectrum (see 'frange.detec'). If NULL (default) then the 'threshold' value is used.

img

Logical argument. If FALSE, image files are not produced. Default is TRUE.

parallel

Numeric. Controls whether parallel computing is applied. It specifies the number of cores to be used. Default is 1 (i.e. no parallel computing).

path

Character string containing the directory path where the sound files are located. If NULL (default) then the current working directory is used.

ts.df

Optional. Data frame with frequency contour time series of signals to be compared. If provided "X" is ignored.

img.suffix

A character vector of length 1 with a suffix (label) to add at the end of the names of image files. Default is NULL.

pb

Logical argument to control progress bar. Default is TRUE.

clip.edges

Logical argument to control whether edges (start or end of signal) in which amplitude values above the threshold were not detected will be removed. If TRUE (default) this edges will be excluded and contours will be calculated on the remaining values. Note that DTW cannot be applied if missing values (e.i. when amplitude is not detected).

window.type

dtw windowing control parameter. Character: "none", "itakura", or a function (see dtw).

open.end

dtw control parameter. Performs open-ended alignments (see dtw).

scale

Logical. If TRUE dominant frequency values are z-transformed using the scale function, which "ignores" differences in absolute frequencies between the signals in order to focus the comparison in the frequency contour, regardless of the pitch of signals. Default is TRUE.

frange.detec

Logical. Controls whether frequency range of signal is automatically detected using the frange.detec function. If so, the range is used as the bandpass filter (overwriting 'bp' argument). Default is FALSE.

fsmooth

A numeric vector of length 1 to smooth the frequency spectrum with a mean sliding window (in kHz) used for frequency range detection (when frange.detec = TRUE). This help to average amplitude "hills" to minimize the effect of amplitude modulation. Default is 0.1.

adjust.wl

Logical. If TRUE 'wl' (window length) is reset to be lower than the number of samples in a selection if the number of samples is less than 'wl'. Default is TRUE.

...

Additional arguments to be passed to trackfreqs for customizing graphical output.

Value

A matrix with the pairwise dissimilarity values. If img is FALSE it also produces image files with the spectrograms of the signals listed in the input data frame showing the location of the dominant frequencies.

Details

This function extracts the dominant frequency values as a time series and then calculates the pairwise acoustic dissimilarity using dynamic time warping. The function uses the approx function to interpolate values between dominant frequency measures. If 'img' is TRUE the function also produces image files with the spectrograms of the signals listed in the input data frame showing the location of the dominant frequencies.

References

Araya-Salas, M., & Smith-Vidaurre, G. (2017). warbleR: An R package to streamline analysis of animal acoustic signals. Methods in Ecology and Evolution, 8(2), 184-191.

See also

specreator for creating spectrograms from selections, snrspecs for creating spectrograms to optimize noise margins used in sig2noise and dfts, ffts, ffDTW for frequency contour overlaid spectrograms. blog post on DTW similarity

Other spectrogram creators: color.spectro(), dfts(), ffDTW(), ffts(), multi_DTW(), phylo_spectro(), snrspecs(), sp.en.ts(), specreator(), trackfreqs()

Examples

{ #load data data(list = c("Phae.long1", "Phae.long2","lbh_selec_table")) writeWave(Phae.long2, file.path(tempdir(), "Phae.long2.wav")) #save sound files writeWave(Phae.long1, file.path(tempdir(), "Phae.long1.wav")) # run function dfDTW(lbh_selec_table, length.out = 30, flim = c(1, 12), bp = c(2, 9), wl = 300, path = tempdir()) }
#> Phae.long1.wav-1 Phae.long1.wav-2 Phae.long1.wav-3 #> Phae.long1.wav-1 0.000 7.272 11.403 #> Phae.long1.wav-2 7.272 0.000 11.796 #> Phae.long1.wav-3 11.403 11.796 0.000 #> Phae.long2.wav-1 26.382 29.085 26.069 #> Phae.long2.wav-2 29.848 35.795 28.625 #> Phae.long3.wav-1 16.493 16.577 17.314 #> Phae.long3.wav-2 15.936 18.143 17.879 #> Phae.long3.wav-3 28.997 30.793 28.669 #> Phae.long4.wav-1 39.502 36.727 41.317 #> Phae.long4.wav-2 33.201 32.440 32.360 #> Phae.long4.wav-3 30.884 31.481 31.163 #> Phae.long2.wav-1 Phae.long2.wav-2 Phae.long3.wav-1 #> Phae.long1.wav-1 26.382 29.848 16.493 #> Phae.long1.wav-2 29.085 35.795 16.577 #> Phae.long1.wav-3 26.069 28.625 17.314 #> Phae.long2.wav-1 0.000 13.817 14.612 #> Phae.long2.wav-2 13.817 0.000 14.928 #> Phae.long3.wav-1 14.612 14.928 0.000 #> Phae.long3.wav-2 13.467 12.457 7.492 #> Phae.long3.wav-3 13.696 11.293 10.941 #> Phae.long4.wav-1 21.663 28.508 34.870 #> Phae.long4.wav-2 24.228 30.853 32.414 #> Phae.long4.wav-3 22.699 32.104 29.358 #> Phae.long3.wav-2 Phae.long3.wav-3 Phae.long4.wav-1 #> Phae.long1.wav-1 15.936 28.997 39.502 #> Phae.long1.wav-2 18.143 30.793 36.727 #> Phae.long1.wav-3 17.879 28.669 41.317 #> Phae.long2.wav-1 13.467 13.696 21.663 #> Phae.long2.wav-2 12.457 11.293 28.508 #> Phae.long3.wav-1 7.492 10.941 34.870 #> Phae.long3.wav-2 0.000 10.575 29.015 #> Phae.long3.wav-3 10.575 0.000 24.246 #> Phae.long4.wav-1 29.015 24.246 0.000 #> Phae.long4.wav-2 28.587 25.428 9.646 #> Phae.long4.wav-3 25.851 26.609 15.328 #> Phae.long4.wav-2 Phae.long4.wav-3 #> Phae.long1.wav-1 33.201 30.884 #> Phae.long1.wav-2 32.440 31.481 #> Phae.long1.wav-3 32.360 31.163 #> Phae.long2.wav-1 24.228 22.699 #> Phae.long2.wav-2 30.853 32.104 #> Phae.long3.wav-1 32.414 29.358 #> Phae.long3.wav-2 28.587 25.851 #> Phae.long3.wav-3 25.428 26.609 #> Phae.long4.wav-1 9.646 15.328 #> Phae.long4.wav-2 0.000 8.372 #> Phae.long4.wav-3 8.372 0.000