multi_DTW
is a wrapper on dtwDist
that simplify applying dynamic time warping on multivariate contours.
Usage
multi_DTW(
ts.df1 = NULL,
ts.df2 = NULL,
pb = TRUE,
parallel = 1,
window.type = "none",
open.end = FALSE,
scale = FALSE,
dist.mat = TRUE,
...
)
Arguments
- ts.df1
Optional. Data frame with frequency contour time series of signals to be compared.
- ts.df2
Optional. Data frame with frequency contour time series of signals to be compared.
- pb
Logical argument to control progress bar. Default is
TRUE
. Note that progress bar is only used when parallel = 1.- parallel
Numeric. Controls whether parallel computing is applied. It specifies the number of cores to be used. Default is 1 (i.e. no parallel computing). Not available in Windows OS.
- window.type
dtw
windowing control parameter. Character: "none", "itakura", or a function (seedtw
).- open.end
dtw
control parameter. Performs open-ended alignments (seedtw
).- scale
Logical. If
TRUE
dominant frequency values are z-transformed using thescale
function, which "ignores" differences in absolute frequencies between the signals in order to focus the comparison in the frequency contour, regardless of the pitch of signals. Default isTRUE
.- dist.mat
Logical controlling whether a distance matrix (
TRUE
, default) or a tabular data frame (FALSE
) is returned.- ...
Additional arguments to be passed to
track_freq_contour
for customizing graphical output.
Value
A matrix with the pairwise dissimilarity values. If img is
FALSE
it also produces image files with the spectrograms of the signals listed in the
input data frame showing the location of the dominant frequencies.
Details
This function extracts the dominant frequency values as a time series and
then calculates the pairwise acoustic dissimilarity using dynamic time warping.
The function uses the approx
function to interpolate values between dominant
frequency measures. If 'img' is TRUE
the function also produces image files
with the spectrograms of the signals listed in the input data frame showing the
location of the dominant frequencies.
References
Araya-Salas, M., & Smith-Vidaurre, G. (2017). warbleR: An R package to streamline analysis of animal acoustic signals. Methods in Ecology and Evolution, 8(2), 184-191.
See also
Other spectrogram creators:
color_spectro()
,
freq_DTW()
,
phylo_spectro()
,
snr_spectrograms()
,
spectrograms()
,
track_freq_contour()
Author
Marcelo Araya-Salas (marcelo.araya@ucr.ac.cr)
Examples
if (FALSE) { # \dontrun{
# load data
data(list = c("Phae.long1", "Phae.long2", "Phae.long3", "Phae.long4", "lbh_selec_table"))
writeWave(Phae.long1, file.path(tempdir(), "Phae.long1.wav")) # save sound files
writeWave(Phae.long2, file.path(tempdir(), "Phae.long2.wav"))
writeWave(Phae.long3, file.path(tempdir(), "Phae.long3.wav"))
writeWave(Phae.long4, file.path(tempdir(), "Phae.long4.wav"))
# measure
df <- freq_ts(X = lbh_selec_table, threshold = 10, img = FALSE, path = tempdir())
se <- freq_ts(X = lbh_selec_table, threshold = 10, img = FALSE, path = tempdir(), type = "entropy")
# run function
multi_DTW(df, se)
} # }