Measures of acoustic structure
Objetives
Learn the different methods available to quantify acoustic structure
Understand their pros and cons
Learn how to apply them in R
Acoustic signals are multidimensional traits; they vary complexly in time, frequency, amplitude and combinations of these dimensions. Generally, in biology we want to measure aspects of acoustic signals that vary in response to the factors predicted by our hypotheses. In some cases we even lack predictions for specific acoustic parameters and we need to evaluate the relative similarity between the variants of a signal in a population. These analyses require a diversity of tools for quantifying the multiple dimensions in which we can decompose the signals.
The warbleR package is designed to quantify the acoustic structure of a population of signals using 4 main methods of analysis. 2 of them are absolute measures of the structure:
- Spectrographic parameters
- Statistical descriptors of cepstral coefficients
The other 2 provide a relative similarity value between signals:
- Spectrographic cross-correlation
- Dynamic time warping
1 Spectrographic parameters
The spectro_analysis()
function measures the following spectrographic parameters related to amplitude distributions in time and frequency, descriptors of the fundamental and dominant frequency contours and descriptors of harmonic content:
1.0.1 Time and frequency (measured on the spectrogram)
duration: signal length (in s)
meanfreq: medium frequency. Weighted average frequency by amplitude (in kHz)
sd: standard deviation of the amplitude weighted frequency
1.0.2 Energy distribution across frequencies (measured on the power spetrum)
freq.median: medium frequency. The frequency at which the signal is divided into two frequency intervals of equal energy (in kHz)
freq.Q25: first frequency quartile. The frequency at which the signal is divided into two frequency ranges of 25% and 75% energy respectively (in kHz)
freq.Q75: third frequency quartile. The frequency at which the signal is divided into two frequency ranges of 75% and 25% energy respectively (in kHz)
freq.IQR: interquartile frequency range. Frequency range between ‘freq.Q25’ and ‘freq.Q75’ (in kHz)
sp.ent: spectral entropy. Frequency spectrum energy distribution. Pure tone ~ 0; loud ~ 1
peakf: peak frequency. Frequency with the highest energy. This parameter can take a considerable amount of time to measure. Only generated if
fast = FALSE
. It provides a more accurate measurement of the peak frequency thanmeanpeakf()
, but can be more easily affected by background noisemeanpeakf: mean peak frequency. Frequency with the highest energy of the medium frequency spectrum (see
meanspec()
). Typically more consistent thanpeakf()
1.0.3 Energy distribution across time (measured on the amplitude envelope)
time.median: average time. The time at which the signal is divided into two time intervals of equal energy (in s)
time.Q25: first quartile. The time in which the signal is divided into two time intervals of 25% and 75% energy respectively (in s)
time Q75: third quartile. The time in which the signal is divided into two time intervals of 75% and 25% energy respectively (in s)
time.IQR: interquartile time range. Time range between ‘time.Q25’ and ‘time.Q75’ (in s)
skew (skewness): Asymmetry of the amplitude distribution
kurt (kurtosis): measure of “peakedness” of the spectrum
time.ent: temporary entropy. Energy distribution in the time envelope. Pure tone ~ 0; loud ~ 1
entropy: Product of the spectral and temporal entropy:
sp.ent * time.ent
sfm: spectral flatness. Similar to sp.ent (pure tone ~ 0; loud ~ 1)
1.0.4 Fundamental frequency contour descriptors (measured on the spectrogram)
meanfun: average of the fundamental frequency measured through the signal
minfun: minimum fundamental frequency measured through the signal
maxfun: maximum fundamental frequency measured through the signal
1.0.5 Dominant frequency contour descriptors (measured on the spectrogram)
meandom: average of the dominant frequency measured through the signal
mindom: minimum dominant frequency measured through the signal
maxdom: maximum of the dominant frequency measured through the signal
dfrange: dominant frequency range measured through the signal
modindx: modulation index. Calculated as the cumulative absolute difference between adjacent measurements of dominant frequencies divided by the dominant frequency range. 1 means that the signals are not modulated
startdom: measurement of dominant frequency at the beginning of the signal
enddom: dominant frequency measurement at the end of the signal
dfslope: pending change in the dominant frequency over time (
(enddom-startdom)/duration
). The units are kHz/s
1.0.6 Harmonic content descriptors (measured on the spectrogram)
hn_freq: average frequency of the upper ‘n’ harmonics (kHz) The number of harmonics is defined with the argument ‘nharmonics’
hn_width: average bandwidth of the upper ‘n’ harmonics (kHz) (see analysis). The number of harmonics is defined with the argument ‘nharmonics’
harmonics: the amount of energy in higher harmonics. The number of harmonics is defined with the argument ‘nharmonics’
HNR: relationship between harmonics and noise (dB). A measure of harmonic content
We can easily measure them as follows:
Code
library(warbleR)
# load examples
data("lbh_selec_table")
# global parameters
warbleR_options(wav.path = "./examples", flim = c(1, 10), wl = 200, ovlp = 90, pb = FALSE)
<- spectro_analysis(lbh_selec_table)
sp
sp
sound.files | selec | duration | meanfreq | sd | freq.median | freq.Q25 | freq.Q75 | freq.IQR | time.median | time.Q25 | time.Q75 | time.IQR | skew | kurt | sp.ent | time.ent | entropy | sfm | meandom | mindom | maxdom | dfrange | modindx | startdom | enddom | dfslope | meanpeakf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phae.long1.wav | 1 | 0.1730334 | 5.979896 | 1.399059 | 6.327995 | 5.293800 | 6.865314 | 1.571513 | 0.0761870 | 0.0479696 | 0.1175725 | 0.0696029 | 1.999405 | 7.027830 | 0.9434264 | 0.8885049 | 0.8382390 | 0.6510692 | 6.477971 | 2.30625 | 8.38125 | 6.0750 | 5.518518 | 7.03125 | 2.30625 | -27.306859 | 7.14375 |
Phae.long1.wav | 2 | 0.1630480 | 5.997299 | 1.422930 | 6.212125 | 5.328746 | 6.880795 | 1.552049 | 0.0763491 | 0.0452439 | 0.1149950 | 0.0697511 | 1.918356 | 7.334323 | 0.9468217 | 0.8908364 | 0.8434632 | 0.6678647 | 6.712500 | 3.88125 | 8.49375 | 4.6125 | 4.756098 | 6.91875 | 7.25625 | 2.069942 | 6.91875 |
Phae.long1.wav | 3 | 0.1749187 | 6.018300 | 1.514853 | 6.424759 | 5.150246 | 6.979144 | 1.828898 | 0.0893477 | 0.0545491 | 0.1279082 | 0.0733591 | 2.496740 | 11.147728 | 0.9450838 | 0.8882080 | 0.8394311 | 0.6716602 | 6.560194 | 2.30625 | 8.71875 | 6.4125 | 6.842105 | 2.30625 | 7.25625 | 28.298854 | 7.14375 |
Phae.long2.wav | 1 | 0.1325709 | 6.398304 | 1.340412 | 6.595971 | 5.607323 | 7.380852 | 1.773529 | 0.0763038 | 0.0534126 | 0.1039639 | 0.0505512 | 1.568523 | 6.016392 | 0.9424661 | 0.9000328 | 0.8482504 | 0.6086184 | 6.510728 | 4.89375 | 7.93125 | 3.0375 | 9.703704 | 7.14375 | 6.24375 | -6.788820 | 7.36875 |
Phae.long2.wav | 2 | 0.1261502 | 6.308252 | 1.369242 | 6.596836 | 5.605837 | 7.207292 | 1.601455 | 0.0770280 | 0.0539196 | 0.0991735 | 0.0452539 | 2.470897 | 10.896039 | 0.9357725 | 0.9029598 | 0.8449650 | 0.6152336 | 6.223139 | 3.09375 | 7.70625 | 4.6125 | 7.048781 | 5.68125 | 6.46875 | 6.242559 | 6.69375 |
Phae.long3.wav | 1 | 0.1312195 | 6.608301 | 1.092168 | 6.665328 | 6.063201 | 7.343674 | 1.280473 | 0.0641852 | 0.0431095 | 0.0890929 | 0.0459835 | 1.775295 | 6.632376 | 0.9301880 | 0.9007131 | 0.8378325 | 0.5700750 | 6.708750 | 4.89375 | 8.04375 | 3.1500 | 7.928571 | 5.68125 | 7.93125 | 17.146838 | 6.69375 |
Phae.long3.wav | 2 | 0.1301789 | 6.639859 | 1.117356 | 6.674164 | 6.105325 | 7.427493 | 1.322168 | 0.0689176 | 0.0449879 | 0.0938046 | 0.0488167 | 1.545851 | 4.969900 | 0.9232849 | 0.9014187 | 0.8322663 | 0.5317422 | 6.532190 | 4.66875 | 8.15625 | 3.4875 | 7.870968 | 5.68125 | 6.58125 | 6.913561 | 6.69375 |
Phae.long3.wav | 3 | 0.1312170 | 6.580739 | 1.253000 | 6.646959 | 6.029463 | 7.394054 | 1.364591 | 0.0641635 | 0.0402219 | 0.0928934 | 0.0526715 | 1.802520 | 5.886959 | 0.9191879 | 0.9013920 | 0.8285486 | 0.5258369 | 6.379076 | 2.98125 | 8.04375 | 5.0625 | 5.244444 | 2.98125 | 6.80625 | 29.150196 | 6.69375 |
Phae.long4.wav | 1 | 0.1454249 | 6.219479 | 1.478869 | 6.233074 | 5.456261 | 7.305488 | 1.849227 | 0.0826911 | 0.0446722 | 0.1121557 | 0.0674835 | 1.274811 | 4.458109 | 0.9643357 | 0.8959714 | 0.8640172 | 0.7599268 | 6.209416 | 3.43125 | 8.71875 | 5.2875 | 7.702128 | 7.93125 | 3.43125 | -30.943804 | 6.24375 |
Phae.long4.wav | 2 | 0.1441864 | 6.462809 | 1.592876 | 6.338070 | 5.630777 | 7.572366 | 1.941589 | 0.0834713 | 0.0426842 | 0.1081333 | 0.0654491 | 1.695847 | 6.442755 | 0.9585943 | 0.8964128 | 0.8592962 | 0.7199148 | 6.386397 | 3.31875 | 9.05625 | 5.7375 | 3.921569 | 8.04375 | 3.31875 | -32.770070 | 6.24375 |
Phae.long4.wav | 3 | 0.1450989 | 6.122156 | 1.541046 | 6.081716 | 5.178639 | 7.239860 | 2.061221 | 0.0806173 | 0.0436282 | 0.1100189 | 0.0663907 | 1.083042 | 4.194037 | 0.9642064 | 0.8962628 | 0.8641823 | 0.7332565 | 6.180195 | 3.31875 | 8.60625 | 5.2875 | 6.255319 | 7.81875 | 3.31875 | -31.013324 | 6.01875 |
Exercise
The parameters related to harmonic content were not calculated. How can I have do that?
How does measuring harmonic content affect performance?
What does the argument ‘threshold’ do?
2 Statistical descriptors of cepstral coefficients
These coefficients were designed to decompose the sounds in a similar way than the human auditory system in order to facilitate speech recognition. The central idea is to compress the acoustic data maintaining only relevant information for the detection of phonetic differences. The principle refers to human hearing using the Mel logarithmic scale whose definition is based on how the human ear perceives frequency and loudness (Sueur 2018). Cepstral coefficients are literally defined as “the result of a cosine transformation of the real logarithm of short-term energy spectra expressed on a Mel frequency scale”.
The descriptive statistics that are extracted from the cepstral coefficients are: minimum, maximum, average, median, asymmetry, kurtosis and variance. It also returns the mean and variance for the first and second derivatives of the coefficients. These parameters are commonly used in the processing and detection of acoustic signals (e.g. Salamon et al 2014). They have been widely used for human voice analysis and its use has extended to mammalian bioacoustics, although they also appear to be useful for quantifying the structure of acoustic signals in other groups.
In warbleR we can calculate statistical descriptors of cepstral coefficients with the mfcc_stats()
function:
Code
<- mfcc_stats(X = lbh_selec_table)
cc
cc
sound.files | selec | min.cc1 | min.cc2 | min.cc3 | min.cc4 | min.cc5 | min.cc6 | min.cc7 | min.cc8 | min.cc9 | min.cc10 | min.cc11 | min.cc12 | min.cc13 | min.cc14 | min.cc15 | min.cc16 | min.cc17 | min.cc18 | min.cc19 | min.cc20 | min.cc21 | min.cc22 | min.cc23 | min.cc24 | min.cc25 | max.cc1 | max.cc2 | max.cc3 | max.cc4 | max.cc5 | max.cc6 | max.cc7 | max.cc8 | max.cc9 | max.cc10 | max.cc11 | max.cc12 | max.cc13 | max.cc14 | max.cc15 | max.cc16 | max.cc17 | max.cc18 | max.cc19 | max.cc20 | max.cc21 | max.cc22 | max.cc23 | max.cc24 | max.cc25 | median.cc1 | median.cc2 | median.cc3 | median.cc4 | median.cc5 | median.cc6 | median.cc7 | median.cc8 | median.cc9 | median.cc10 | median.cc11 | median.cc12 | median.cc13 | median.cc14 | median.cc15 | median.cc16 | median.cc17 | median.cc18 | median.cc19 | median.cc20 | median.cc21 | median.cc22 | median.cc23 | median.cc24 | median.cc25 | mean.cc1 | mean.cc2 | mean.cc3 | mean.cc4 | mean.cc5 | mean.cc6 | mean.cc7 | mean.cc8 | mean.cc9 | mean.cc10 | mean.cc11 | mean.cc12 | mean.cc13 | mean.cc14 | mean.cc15 | mean.cc16 | mean.cc17 | mean.cc18 | mean.cc19 | mean.cc20 | mean.cc21 | mean.cc22 | mean.cc23 | mean.cc24 | mean.cc25 | var.cc1 | var.cc2 | var.cc3 | var.cc4 | var.cc5 | var.cc6 | var.cc7 | var.cc8 | var.cc9 | var.cc10 | var.cc11 | var.cc12 | var.cc13 | var.cc14 | var.cc15 | var.cc16 | var.cc17 | var.cc18 | var.cc19 | var.cc20 | var.cc21 | var.cc22 | var.cc23 | var.cc24 | var.cc25 | skew.cc1 | skew.cc2 | skew.cc3 | skew.cc4 | skew.cc5 | skew.cc6 | skew.cc7 | skew.cc8 | skew.cc9 | skew.cc10 | skew.cc11 | skew.cc12 | skew.cc13 | skew.cc14 | skew.cc15 | skew.cc16 | skew.cc17 | skew.cc18 | skew.cc19 | skew.cc20 | skew.cc21 | skew.cc22 | skew.cc23 | skew.cc24 | skew.cc25 | kurt.cc1 | kurt.cc2 | kurt.cc3 | kurt.cc4 | kurt.cc5 | kurt.cc6 | kurt.cc7 | kurt.cc8 | kurt.cc9 | kurt.cc10 | kurt.cc11 | kurt.cc12 | kurt.cc13 | kurt.cc14 | kurt.cc15 | kurt.cc16 | kurt.cc17 | kurt.cc18 | kurt.cc19 | kurt.cc20 | kurt.cc21 | kurt.cc22 | kurt.cc23 | kurt.cc24 | kurt.cc25 | mean.d1.cc | var.d1.cc | mean.d2.cc | var.d2.cc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phae.long1.wav | 1 | 84.32923 | -11.76513 | -11.18492 | -6.0584627 | -19.48781 | -18.925700 | -29.78141 | -20.108571 | -30.013144 | -35.33559 | -18.78548 | -14.72824 | -17.34269 | -15.038620 | -16.88236 | -19.350662 | -18.31898 | -22.172183 | -14.48335 | -18.022615 | -12.746066 | -11.956576 | -16.452832 | -11.271758 | -17.689274 | 113.99735 | -3.504852 | 4.9044888 | 14.01473 | 11.926071 | 23.15194 | 18.45006 | 18.279624 | 13.24953 | 19.780421 | 25.037088 | 11.088286 | 9.420685 | 19.068858 | 15.261244 | 27.81587 | 14.76590 | 23.18529 | 23.323491 | 13.35063 | 13.489834 | 11.386929 | 14.879921 | 17.460077 | 17.881148 | 100.78462 | -8.014139 | -2.523547 | 4.5129178 | -4.654038 | 1.7101299 | 0.4097267 | -8.2092001 | -0.6494351 | -12.2767547 | 3.2440322 | -1.2003857 | 0.5455499 | 4.5166704 | -0.3083392 | -5.0343073 | -0.8391115 | 0.1977175 | 5.0807704 | -0.4957302 | 0.4521028 | 1.4788429 | 0.4990238 | 2.4981325 | -3.1430709 | 101.08282 | -7.858590 | -2.583408 | 3.6987932 | -4.971305 | 4.1609654 | -2.0280573 | -4.7209259 | -2.8665075 | -11.1703248 | 3.2227089 | -1.6356360 | -0.5039902 | 4.3564081 | -0.1989548 | -2.9284445 | -1.1523253 | -0.7210100 | 6.2913939 | -0.3807152 | 0.3753687 | 1.3054995 | 1.0918911 | 2.5730086 | -3.4629084 | 38.54742 | 3.080550 | 9.676699 | 24.878891 | 51.02731 | 143.44956 | 228.64581 | 92.565654 | 81.37786 | 183.97728 | 110.99179 | 31.78753 | 32.98640 | 50.46467 | 49.74505 | 101.25749 | 53.45791 | 70.55530 | 77.18366 | 58.48509 | 28.36997 | 18.42023 | 43.55758 | 36.11912 | 50.53745 | -0.8525715 | 0.0070749 | -0.3394632 | -0.0228898 | -0.0499756 | 0.0314614 | -0.3777624 | 0.7563943 | -0.8795527 | 0.1369849 | 0.0356844 | -0.2693451 | -0.5837437 | -0.1670622 | -0.1587374 | 1.0948912 | -0.3489756 | -0.1417061 | 0.0615221 | -0.3280103 | 0.0002460 | -0.3000768 | -0.0950197 | 0.1054436 | 0.2366725 | 3.978925 | 2.572158 | 3.259741 | 1.969604 | 2.439503 | 1.555814 | 1.817494 | 2.429605 | 3.295335 | 1.736930 | 2.187305 | 2.322068 | 2.838789 | 2.518899 | 2.388298 | 3.845852 | 2.422849 | 3.322209 | 2.096780 | 2.617920 | 2.845040 | 2.944752 | 2.695023 | 2.404698 | 2.979525 | -162.8716 | 120738.39 | 2274.538 | 13988635 |
Phae.long1.wav | 2 | 86.07548 | -11.91646 | -12.18542 | -8.6272984 | -18.72726 | -19.122828 | -29.55422 | -15.419662 | -23.873777 | -39.56706 | -16.48812 | -15.67352 | -20.04686 | -16.567527 | -23.43945 | -16.600334 | -20.51312 | -20.710603 | -10.18992 | -19.518550 | -10.980131 | -9.042274 | -22.290707 | -13.343676 | -18.216693 | 113.72199 | -4.613946 | 4.0046793 | 17.26028 | 11.839680 | 20.98899 | 18.18485 | 16.048474 | 13.01459 | 26.481963 | 23.840422 | 12.489321 | 12.888397 | 17.280133 | 11.552351 | 30.00600 | 26.34564 | 26.60756 | 26.783712 | 14.75662 | 12.181809 | 9.479065 | 16.702203 | 10.074379 | 27.159221 | 102.96939 | -8.232139 | -3.305544 | 5.3750185 | -5.522622 | -1.4281089 | -0.8799003 | -4.0623761 | 1.2965903 | -10.9291358 | 0.9674887 | -2.5717512 | 2.3195448 | 2.7489489 | -2.4962780 | -0.4686710 | -1.4110075 | 0.3941393 | 4.5034699 | -3.1118899 | 0.8915142 | 0.8774014 | 0.9537821 | 0.6016009 | -2.3760850 | 102.11641 | -8.110811 | -3.270509 | 4.0824555 | -5.279448 | 2.1963647 | -3.8359976 | -1.9337745 | -0.1455146 | -7.1102704 | 2.3428896 | -1.8141892 | 0.8499174 | 2.1053632 | -3.0172479 | 1.9352943 | -2.4889097 | 0.8561653 | 4.7234929 | -2.8633469 | 0.9329030 | 0.5541757 | 0.4571885 | 0.3962518 | -1.7985663 | 32.69969 | 3.272744 | 12.120477 | 34.220961 | 59.92448 | 161.62623 | 190.11835 | 87.309406 | 76.27199 | 197.43674 | 100.12692 | 30.49991 | 43.78743 | 34.62127 | 64.53584 | 113.70042 | 73.03144 | 94.22433 | 84.13487 | 70.17767 | 24.55948 | 16.36854 | 71.95985 | 28.68820 | 78.75229 | -0.7937595 | 0.0368251 | -0.1836676 | -0.2477335 | 0.2052126 | 0.0785791 | -0.3988799 | 0.2427482 | -0.7602454 | 0.2264087 | 0.2118971 | 0.0189160 | -0.6390020 | -0.1645549 | -0.4137205 | 1.0354560 | 0.1110707 | 0.2029748 | 0.2052125 | 0.0468125 | -0.1614243 | -0.0904110 | -0.6670217 | -0.2735971 | 0.9766275 | 3.499764 | 2.309498 | 2.535486 | 2.574509 | 2.153644 | 1.473513 | 1.943041 | 1.637756 | 2.839401 | 2.478765 | 2.033868 | 3.389931 | 2.726985 | 3.201433 | 2.395783 | 3.746845 | 3.235674 | 3.263642 | 2.040132 | 2.243469 | 2.405112 | 2.403771 | 3.177252 | 2.332764 | 4.299571 | -162.7222 | 125044.72 | 2358.420 | 14610321 |
Phae.long1.wav | 3 | 84.71447 | -12.86693 | -12.37385 | -6.6677525 | -17.93314 | -15.855967 | -28.84733 | -18.620027 | -20.857060 | -38.24592 | -16.96329 | -12.18738 | -22.86534 | -7.317589 | -20.06833 | -22.161444 | -19.36095 | -21.741610 | -10.87104 | -12.149563 | -14.662678 | -7.931532 | -16.423956 | -10.964721 | -21.643870 | 108.18040 | -2.964319 | 4.0996661 | 14.58979 | 9.184255 | 23.05499 | 20.77710 | 17.371439 | 14.50500 | 18.461626 | 22.936062 | 16.707360 | 13.913267 | 21.969152 | 15.766074 | 21.96113 | 11.44151 | 15.36057 | 24.586317 | 13.99253 | 13.378289 | 12.853060 | 17.257267 | 12.082475 | 20.207047 | 98.16825 | -9.028246 | -3.016906 | 3.5703002 | -5.831004 | 1.3350682 | 0.7441784 | -5.8756895 | -1.9412309 | -11.3615555 | 3.6082495 | 0.7845383 | 1.0138900 | 3.5563993 | -0.9615083 | -4.9571527 | -0.2061702 | 0.3086402 | 3.8898702 | 0.2277695 | -0.2069073 | 1.0601127 | 2.3452034 | 1.8802654 | -2.8945657 | 97.81067 | -8.405651 | -2.853761 | 2.6311424 | -4.651573 | 4.8392030 | -2.3114324 | -2.8713025 | -2.5946477 | -10.7281817 | 3.0926057 | 0.7038435 | 0.4572550 | 4.2125981 | -0.7717674 | -2.7353614 | -1.0883229 | -0.4691156 | 4.9406418 | 0.5472174 | 0.6017814 | 0.7476270 | 2.2475173 | 1.4723863 | -3.0864121 | 27.66152 | 5.455827 | 13.984391 | 26.119854 | 47.45200 | 145.84450 | 173.16803 | 82.233643 | 59.94727 | 209.29478 | 78.04604 | 33.45872 | 49.39895 | 41.80205 | 58.96178 | 92.02909 | 46.43705 | 57.16307 | 57.65391 | 36.67725 | 24.79103 | 18.71207 | 41.84955 | 29.14779 | 46.46215 | -0.6098012 | 0.4598246 | -0.2788199 | 0.0353535 | 0.2516610 | 0.1118688 | -0.3816367 | 0.6782386 | -0.1451220 | -0.1623321 | -0.0378343 | 0.0683836 | -0.7565889 | 0.7368333 | -0.2841870 | 0.7107961 | -0.4949666 | -0.4362038 | 0.4053479 | -0.0378969 | 0.1268823 | 0.2473709 | -0.4867252 | -0.1591703 | 0.4457043 | 2.959010 | 2.274255 | 2.543097 | 2.113162 | 2.188736 | 1.531366 | 1.978457 | 2.438865 | 2.724626 | 2.068398 | 1.966382 | 2.968897 | 4.250107 | 3.039181 | 2.639594 | 3.085653 | 2.924919 | 2.873747 | 2.593373 | 2.389900 | 3.110694 | 2.716579 | 3.275660 | 2.298071 | 4.609402 | -156.7522 | 112731.22 | 2207.924 | 13414726 |
Phae.long2.wav | 1 | 50.56041 | -18.77867 | -19.18023 | -5.1156831 | -15.31201 | -14.853539 | -19.67227 | -11.337266 | -14.293743 | -19.31601 | -18.31851 | -11.52312 | -11.87761 | -11.474193 | -15.59440 | -13.046359 | -13.47313 | -12.666432 | -17.30676 | -16.478239 | -10.301012 | -8.518116 | -12.098098 | -9.938733 | -21.899395 | 95.82797 | -1.476256 | 0.5356803 | 14.14524 | 4.987772 | 18.03277 | 12.57080 | 9.708234 | 15.57415 | 14.235474 | 14.932578 | 11.346420 | 13.755391 | 10.716971 | 15.203273 | 15.99467 | 14.70524 | 19.57898 | 15.465918 | 15.76738 | 17.087750 | 9.627947 | 11.107409 | 14.562106 | 5.685059 | 89.56016 | -13.281239 | -6.201262 | 6.3350504 | -6.726423 | 2.5687735 | -0.8244336 | 0.2318829 | -1.7580541 | 0.1028389 | 0.4976419 | -0.3414484 | 1.4830689 | -0.3087596 | 1.0895142 | 2.8904778 | 1.5452386 | -0.6254576 | -0.6399199 | -0.1125934 | 1.0698166 | -1.2195655 | 1.1398485 | -0.5621275 | -2.9780041 | 87.54748 | -12.254268 | -6.689966 | 4.8505420 | -5.763817 | 2.1524591 | -0.9377664 | 0.0118461 | 0.0193052 | -0.5631844 | -0.1486082 | -0.3659984 | 1.0885994 | -0.8844645 | 0.5384982 | 2.1560721 | 1.2031469 | 0.2965713 | -1.1924972 | 0.4344829 | 1.9361923 | -0.9634357 | 1.2080221 | -0.3801088 | -3.1717546 | 55.43443 | 14.197314 | 16.523243 | 31.191793 | 27.36259 | 68.21222 | 46.19293 | 20.532498 | 40.28372 | 45.91169 | 74.09408 | 26.48263 | 36.44235 | 21.84555 | 38.27894 | 28.54412 | 30.11865 | 36.06963 | 33.54773 | 29.39322 | 31.44592 | 14.06754 | 24.09755 | 25.55710 | 29.30412 | -2.3617737 | 0.5620661 | -0.7853844 | -0.3253047 | 0.2921540 | -0.2184238 | -0.4646152 | -0.4495660 | 0.5446993 | -0.5564179 | -0.2611293 | 0.0441089 | 0.0447220 | -0.3642512 | -0.1266515 | -0.4195171 | -0.1044080 | 0.8177531 | -0.1788509 | -0.1490543 | 0.2207317 | 0.2935838 | -0.2534314 | 0.6611163 | -0.7195757 | 10.387312 | 2.523812 | 3.744378 | 1.698074 | 1.992397 | 2.233481 | 3.220366 | 2.799218 | 2.868719 | 3.223175 | 2.366506 | 2.316063 | 2.252824 | 2.680087 | 3.092792 | 3.440594 | 2.869778 | 4.211831 | 3.825819 | 3.657709 | 2.519131 | 2.689710 | 2.733973 | 3.322531 | 3.460724 | -139.5949 | 89559.79 | 1997.491 | 11269953 |
Phae.long2.wav | 2 | 69.23577 | -17.18596 | -20.25226 | -3.7917317 | -13.67741 | -17.062368 | -17.69824 | -9.737039 | -9.347726 | -17.34610 | -18.18316 | -13.37309 | -13.09030 | -14.342290 | -27.31758 | -7.811027 | -25.92640 | -12.031356 | -11.93306 | -14.425461 | -13.885818 | -10.478242 | -15.213300 | -12.064791 | -10.104834 | 99.97835 | -4.534624 | 0.6537113 | 14.64448 | 5.035473 | 14.83004 | 12.36953 | 7.862668 | 16.93760 | 16.292855 | 6.457178 | 7.007890 | 8.478286 | 15.513147 | 27.147724 | 28.06045 | 12.82798 | 12.55751 | 19.160344 | 16.53261 | 6.806786 | 11.746044 | 7.754506 | 7.473303 | 16.955569 | 93.62319 | -12.426364 | -6.821915 | 6.3893860 | -7.186507 | 2.4640075 | 1.4933313 | 0.9153600 | 3.0598443 | -3.5772945 | -2.7305020 | -1.6300288 | -5.2094337 | -0.8965981 | 1.6895035 | 2.3893437 | -0.9681590 | -2.3933031 | 2.6390477 | -0.3572365 | -2.6157354 | 0.7066969 | -1.5801441 | -2.8620984 | -0.0191788 | 91.53344 | -10.863905 | -7.527386 | 5.9027922 | -6.464367 | 1.9244645 | -0.0164966 | 1.0469669 | 3.1630834 | -3.8855019 | -2.9781009 | -2.2099903 | -4.3612298 | -0.5546178 | 2.2416490 | 3.4286326 | -1.4016094 | -1.4672608 | 2.5565898 | 0.2292764 | -2.4664863 | 0.1968881 | -1.9062477 | -3.2960670 | 0.6406991 | 42.73550 | 15.345963 | 19.913883 | 24.344033 | 27.18264 | 60.09685 | 52.08649 | 9.928084 | 41.39179 | 62.20534 | 25.28970 | 17.17876 | 23.13800 | 38.11626 | 75.92628 | 56.07860 | 60.29012 | 24.88702 | 28.85301 | 41.57108 | 14.55141 | 24.51716 | 26.07821 | 16.32374 | 26.10237 | -0.9733968 | 0.3680001 | -0.8780162 | -0.2218139 | 0.6471153 | -0.4018160 | -0.9860828 | -0.4577860 | 0.0500170 | 0.5902452 | -0.3561700 | -0.3136212 | 0.4138770 | 0.1423488 | 0.0932327 | 0.9353019 | -1.2559760 | 0.5598416 | 0.0464672 | 0.1264826 | -0.2631874 | -0.1127727 | -0.4960467 | -0.0491214 | 0.9040419 | 3.545202 | 1.599688 | 3.474896 | 1.883349 | 2.362472 | 2.373087 | 3.289100 | 3.615628 | 2.182782 | 3.277128 | 2.785593 | 2.535871 | 2.494026 | 2.737171 | 5.351909 | 3.692174 | 4.843621 | 2.994884 | 3.474904 | 3.118363 | 3.011344 | 2.785522 | 2.839144 | 2.718442 | 4.140334 | -142.0430 | 98525.41 | 2216.821 | 11213543 |
Phae.long3.wav | 1 | 51.52696 | -18.48908 | -13.54987 | 0.1644875 | -16.40398 | -7.595591 | -14.27574 | -13.213955 | -5.091165 | -22.49984 | -12.61909 | -10.28927 | -13.54220 | -11.767158 | -16.44382 | -12.936966 | -12.66129 | -9.618623 | -32.60175 | -7.317495 | -9.127416 | -8.994948 | -13.015914 | -12.708262 | -20.945804 | 91.03291 | -6.438211 | 4.1405479 | 14.33518 | 4.606884 | 13.01582 | 11.18171 | 8.266875 | 16.40768 | 8.103246 | 9.485075 | 9.574047 | 8.639773 | 10.709409 | 11.329384 | 11.18601 | 10.36107 | 10.71221 | 9.950225 | 16.03712 | 24.730990 | 11.957692 | 9.093840 | 21.792011 | 15.059743 | 83.39758 | -14.844842 | -1.573749 | 7.1924013 | -11.810949 | 7.0300692 | -2.1941132 | -1.7703202 | 2.0828468 | -2.5327296 | -0.7059684 | 0.3015867 | -0.0640079 | -0.6900560 | 1.0762733 | -1.1077216 | 0.4657508 | -0.3412012 | -1.1536515 | 0.1696893 | 0.0833877 | 0.3784441 | 0.2870068 | -0.1596489 | -0.2142131 | 80.68792 | -14.271362 | -2.618999 | 7.0638940 | -9.956171 | 5.6958684 | -1.7031731 | -1.5878484 | 3.2049362 | -2.8055485 | -0.9146070 | -0.2788690 | -0.0414812 | -0.6791649 | 0.6176580 | -1.0845294 | 0.2814645 | -0.1251147 | -2.6923536 | 0.3492016 | 0.3582097 | 0.1590165 | -0.1397560 | 0.3851191 | -1.0172323 | 66.70615 | 6.369703 | 18.995024 | 10.241030 | 23.52605 | 29.71595 | 32.12247 | 13.928651 | 22.63694 | 23.42001 | 26.71856 | 18.26408 | 20.07234 | 23.35500 | 26.39624 | 19.14299 | 23.76156 | 24.56074 | 70.11466 | 22.99117 | 43.60260 | 17.67860 | 21.30309 | 37.59117 | 41.89435 | -1.4009528 | 0.7010760 | -0.7045305 | -0.1574926 | 1.5154837 | -0.7520569 | 0.4028089 | -0.0182238 | 0.7948237 | -1.3661896 | -0.2498680 | -0.2481627 | -0.4269518 | -0.2017573 | -0.7938926 | 0.0193557 | -0.4020360 | 0.3084959 | -1.4577410 | 0.8179731 | 1.3592290 | -0.0870922 | -0.5356686 | 1.1259595 | -1.1072573 | 4.357722 | 2.810805 | 2.649706 | 2.619563 | 4.438030 | 2.480966 | 2.730453 | 3.850931 | 3.129568 | 7.021544 | 2.527106 | 2.478784 | 3.173013 | 2.777882 | 4.113397 | 3.492418 | 2.974481 | 2.135857 | 5.292465 | 3.666222 | 5.296414 | 2.925071 | 2.714289 | 5.456608 | 4.853802 | -125.8625 | 76790.36 | 1904.035 | 9282622 |
Phae.long3.wav | 2 | 52.65548 | -18.25355 | -15.46921 | -0.9814104 | -16.17827 | -11.888869 | -16.43251 | -12.413136 | -13.303840 | -18.75192 | -14.12018 | -9.94332 | -15.28994 | -12.331302 | -15.61214 | -18.423967 | -15.98526 | -5.863614 | -28.96201 | -15.711890 | -8.452064 | -15.948944 | -11.434859 | -9.863952 | -20.625615 | 89.25353 | -6.267069 | 3.5404749 | 15.45726 | 3.923592 | 13.21030 | 15.00087 | 5.169150 | 12.97379 | 15.827433 | 8.115085 | 9.779450 | 14.480119 | 14.525023 | 12.480762 | 15.99009 | 11.95247 | 15.40194 | 9.997352 | 13.60333 | 19.515747 | 13.013623 | 12.235432 | 24.335281 | 8.532834 | 83.94096 | -14.785131 | -1.626893 | 8.0511617 | -11.939951 | 7.3666675 | -1.5767325 | -1.9304223 | 3.9549825 | -2.3628779 | -2.2937143 | 0.0689487 | 0.0419978 | 0.5506128 | 2.6936255 | -0.0828549 | -0.7624452 | 1.5933829 | -1.3107263 | 1.6486724 | -1.0636650 | -0.2454464 | 1.3396674 | -1.7917913 | -0.2708519 | 82.21010 | -13.854677 | -3.431409 | 7.7150520 | -9.685058 | 5.3855526 | -1.2871304 | -2.4902302 | 3.7755805 | -2.3687067 | -2.3079403 | -0.2260396 | 0.2929752 | 0.3122023 | 2.0454844 | -0.6811508 | -0.4060026 | 2.1806622 | -1.9948232 | 1.2881456 | -0.3267198 | -0.7317912 | 0.8438387 | -0.8889085 | -0.8361620 | 42.25413 | 8.560160 | 21.123699 | 11.025058 | 31.26867 | 30.94029 | 35.54967 | 11.817944 | 26.23967 | 25.55947 | 21.88716 | 22.68222 | 33.16704 | 24.62160 | 22.34397 | 30.74143 | 33.72703 | 22.44852 | 47.16585 | 34.92344 | 23.26969 | 23.58834 | 22.45083 | 35.62439 | 29.97117 | -1.8930677 | 0.7772158 | -0.8901376 | -0.6048479 | 1.2768606 | -1.2004938 | 0.0747053 | -0.4227167 | -0.6352537 | -0.1500344 | -0.0730368 | 0.0198622 | 0.0637853 | 0.0755629 | -0.8779759 | -0.4276955 | -0.2752871 | 0.5433153 | -1.3120250 | -0.3899823 | 1.5951218 | -0.4461833 | -0.2426493 | 2.1671706 | -1.2672366 | 7.269170 | 2.738719 | 2.834298 | 3.106652 | 3.141681 | 3.639527 | 3.305778 | 3.084076 | 3.757768 | 6.197029 | 2.777729 | 2.279314 | 2.980824 | 3.161024 | 4.942372 | 4.732342 | 2.939234 | 2.815338 | 6.004826 | 2.879276 | 6.931951 | 3.576478 | 2.834893 | 9.005364 | 5.273010 | -128.3608 | 78964.35 | 1944.363 | 9439147 |
Phae.long3.wav | 3 | 63.52696 | -17.43387 | -14.57354 | 0.1866403 | -15.93326 | -14.396968 | -18.36977 | -11.647362 | -13.343003 | -17.98165 | -13.11832 | -16.41835 | -20.33493 | -12.775589 | -11.20505 | -18.584587 | -20.62499 | -13.964906 | -12.06025 | -4.988363 | -16.109423 | -10.213555 | -8.516935 | -18.866201 | -8.701287 | 91.12650 | -7.503753 | 2.5826560 | 13.48428 | 2.834422 | 13.10069 | 13.65352 | 7.302118 | 16.15262 | 20.472092 | 9.671298 | 10.719213 | 9.769547 | 9.010339 | 9.883183 | 15.91783 | 12.01769 | 12.32896 | 18.515104 | 15.44906 | 9.016017 | 6.910449 | 11.349493 | 5.825247 | 14.245435 | 85.51208 | -13.948072 | -1.998810 | 7.8273577 | -11.837170 | 7.9332887 | -1.2026988 | -2.1468697 | 3.1807107 | -0.3384937 | 0.5821092 | 1.6764583 | -0.3457622 | -2.1694142 | 0.1874178 | 0.6440910 | -0.4249719 | -0.9916752 | -1.5969691 | 2.9801660 | -1.2317481 | 0.5436020 | 1.7971479 | -0.7717557 | -0.4096777 | 83.58466 | -13.343884 | -3.480298 | 7.6206982 | -9.972402 | 4.7428909 | -1.4516448 | -2.0991832 | 3.3138790 | 0.5980103 | -0.5171419 | 0.8157284 | -1.0814442 | -2.0648980 | 0.1486486 | 0.6509199 | -0.3674902 | -0.4438106 | -1.2793043 | 2.9934971 | -1.7243883 | -0.2204965 | 1.5920567 | -1.8211853 | -0.1166597 | 38.26609 | 6.180594 | 19.588460 | 6.252635 | 23.15894 | 46.70831 | 34.22287 | 12.178370 | 23.56747 | 38.06949 | 26.36688 | 25.49769 | 36.48648 | 20.44102 | 17.02402 | 31.61947 | 36.24182 | 29.78152 | 39.96716 | 23.83514 | 23.49238 | 16.21960 | 17.51334 | 21.88707 | 17.32209 | -1.3816749 | 0.5840598 | -0.8610223 | -0.3178518 | 1.4011049 | -1.1539001 | -0.1064684 | -0.0661053 | -0.4368150 | 0.6554118 | -0.4674317 | -1.2386606 | -0.7150418 | 0.0684964 | -0.1159066 | -0.2000664 | -0.5671129 | 0.1496434 | 0.9414522 | 0.4587045 | -0.7037730 | -0.4643647 | -0.1825552 | -1.5298169 | 0.5314529 | 4.343781 | 2.312242 | 2.915892 | 3.155969 | 3.884295 | 3.095343 | 3.790482 | 3.333604 | 4.731681 | 6.012400 | 2.580577 | 4.922548 | 3.601541 | 2.964935 | 3.123543 | 4.569744 | 3.543262 | 2.893773 | 3.845489 | 2.555675 | 3.552395 | 2.311025 | 2.649072 | 6.034749 | 3.781649 | -129.6083 | 82306.84 | 2000.256 | 9816630 |
Phae.long4.wav | 1 | 81.17215 | -13.36883 | -14.32334 | -11.2320300 | -21.52305 | -26.124102 | -18.05137 | -22.670714 | -35.172175 | -21.21141 | -28.89065 | -13.84315 | -14.23210 | -20.236207 | -28.90261 | -33.119291 | -31.18754 | -22.665818 | -21.62963 | -14.673295 | -9.679038 | -12.263665 | -14.691732 | -13.439850 | -15.336906 | 108.29921 | -2.380876 | 5.1480565 | 16.00147 | 17.696067 | 25.97502 | 28.93749 | 16.489024 | 20.13634 | 38.976446 | 24.093448 | 13.231904 | 22.257771 | 18.321101 | 23.887375 | 26.77188 | 23.13669 | 21.54162 | 18.211784 | 21.22086 | 19.988181 | 12.688617 | 14.944629 | 14.155653 | 12.275442 | 97.53010 | -8.899641 | -4.317321 | 1.2989451 | -6.241419 | -0.8226447 | -0.6885103 | 1.4713862 | 1.4524089 | -0.3251444 | 3.6198024 | -0.8311248 | 0.3989674 | 0.9558217 | 0.6628059 | 0.2776693 | -1.7683483 | -2.0984331 | 1.1769481 | -0.2437460 | -0.1247434 | 1.8517956 | 1.4611222 | 1.4174313 | -2.0160800 | 97.51269 | -8.327846 | -4.516365 | 1.8982430 | -4.664118 | 0.5742034 | 0.8859148 | -1.1323628 | -3.7109920 | 1.8688164 | 1.7046859 | -0.6551707 | 1.0868581 | 1.0509441 | 0.4126990 | -1.5140302 | -2.0060895 | -1.8214670 | 0.1645343 | 0.6260965 | 1.1556291 | 2.1507938 | 0.7881952 | 1.1083693 | -2.4252677 | 20.76587 | 6.457194 | 20.796837 | 37.013566 | 104.13563 | 210.47161 | 130.82306 | 91.173299 | 235.12157 | 214.58224 | 145.76044 | 45.72456 | 66.99274 | 69.16793 | 164.63625 | 220.09873 | 117.15945 | 73.78062 | 73.86750 | 62.68677 | 33.68980 | 20.75617 | 39.16623 | 34.48815 | 34.11364 | -0.4807034 | 0.5421475 | 0.0438345 | 0.1902813 | 0.2445038 | -0.1111487 | 0.4616688 | -0.4352715 | -0.6308532 | 0.5428213 | -0.3824620 | 0.2214837 | 0.1234758 | -0.1601147 | -0.3068665 | -0.3711681 | 0.1123062 | 0.0542471 | -0.4097968 | 0.6422774 | 1.0350717 | -0.0875763 | -0.0956040 | -0.0911201 | -0.0404165 | 4.419232 | 2.571636 | 2.702961 | 2.563584 | 1.968245 | 1.689001 | 2.557529 | 2.212657 | 2.168318 | 2.549528 | 2.553938 | 2.109329 | 2.098725 | 2.811059 | 2.180414 | 2.540761 | 3.042899 | 2.909990 | 2.772233 | 2.916813 | 3.810587 | 3.135353 | 2.707688 | 2.576292 | 2.502401 | -154.9780 | 113957.89 | 2232.101 | 14009335 |
Phae.long4.wav | 2 | 85.93936 | -14.02047 | -15.27076 | -10.5223514 | -21.86064 | -26.243661 | -16.96860 | -20.261418 | -36.413874 | -23.77254 | -31.68066 | -11.46582 | -21.10015 | -22.447486 | -29.29393 | -35.520761 | -23.81466 | -22.990313 | -18.68782 | -15.799625 | -13.474434 | -10.433447 | -14.891138 | -14.433316 | -15.925166 | 110.11022 | -2.888071 | 6.3154347 | 15.49963 | 17.182754 | 23.51133 | 26.58182 | 13.639927 | 19.19507 | 37.673677 | 24.696463 | 13.765457 | 18.146237 | 21.112545 | 28.348188 | 27.94444 | 24.87239 | 22.86546 | 20.101624 | 19.59156 | 18.809891 | 11.751474 | 13.824306 | 14.065797 | 14.749977 | 97.62676 | -9.075638 | -4.180906 | 0.8455709 | -5.464755 | -3.8783404 | 0.2011186 | 2.4132025 | 0.8420818 | 3.8453213 | 3.6287976 | -0.3849610 | 0.3042227 | 0.3793168 | 0.9711272 | 0.1646577 | -1.6891571 | -1.4415768 | 2.3309450 | -0.3271556 | -0.6194160 | 1.1803271 | -0.4432385 | 2.5612843 | -2.3673988 | 97.69409 | -8.629931 | -4.223445 | 0.9874605 | -4.946718 | 0.4212339 | 0.9734149 | -0.9115828 | -3.0815390 | 3.9563844 | 0.6744244 | -0.2094277 | 0.9697767 | 1.2571860 | 0.3891992 | -0.8064589 | -0.9359416 | -1.3903643 | 1.7194488 | 0.9394113 | 0.9244046 | 1.5109870 | -0.1368488 | 2.2985079 | -2.0471891 | 17.53077 | 5.755176 | 23.388071 | 35.774561 | 106.22716 | 213.03310 | 109.73196 | 88.997339 | 230.46437 | 213.92753 | 184.07761 | 36.39303 | 63.59556 | 93.95415 | 172.02878 | 220.11469 | 103.62913 | 80.62873 | 64.42422 | 61.13239 | 49.90626 | 20.17111 | 29.70700 | 40.19999 | 30.50474 | 0.2243093 | 0.4586838 | 0.0530041 | 0.0998925 | 0.1729316 | 0.0212245 | 0.2581881 | -0.4631797 | -0.7580968 | 0.2449392 | -0.2923182 | 0.1278012 | -0.1615675 | 0.0110015 | -0.2495133 | -0.4236119 | 0.4903018 | 0.0939729 | -0.0785067 | 0.4191953 | 0.6288227 | 0.0016867 | 0.0707094 | -0.3447260 | 0.3036929 | 3.950107 | 2.781237 | 2.675812 | 2.269614 | 1.914863 | 1.628221 | 2.401728 | 1.906990 | 2.459879 | 2.356779 | 2.187576 | 2.259377 | 2.426807 | 2.712683 | 2.404569 | 2.661049 | 3.155811 | 2.682496 | 2.704227 | 2.672580 | 2.741615 | 2.677712 | 3.087750 | 2.703029 | 2.962267 | -154.4238 | 114845.97 | 2256.109 | 14157377 |
Phae.long4.wav | 3 | 79.26665 | -12.80419 | -17.38993 | -9.1865953 | -22.10634 | -23.168022 | -21.52971 | -17.775317 | -33.515447 | -16.75138 | -21.45461 | -17.72236 | -18.61181 | -25.293114 | -24.76783 | -32.651173 | -17.66339 | -20.192774 | -17.69250 | -12.900804 | -13.454919 | -8.309600 | -18.038889 | -12.132479 | -18.855531 | 103.38287 | -2.418141 | 4.9158186 | 16.55906 | 16.961050 | 24.28676 | 27.11997 | 13.883459 | 15.48901 | 36.938046 | 22.377769 | 13.133743 | 15.103839 | 24.859209 | 27.855612 | 24.87172 | 19.61238 | 16.24134 | 25.142440 | 20.91978 | 15.526477 | 11.448421 | 16.093285 | 11.618132 | 15.042704 | 93.31006 | -8.253301 | -5.133685 | 2.6243344 | -5.454540 | -1.8141510 | -0.1533529 | -0.6834088 | -1.9405703 | -0.0492234 | 6.0518700 | 1.1188716 | 1.2974693 | 1.0912988 | -0.0965371 | -1.2181218 | -1.0935165 | -1.8645593 | 2.1029980 | 1.5365135 | -2.5229097 | 0.4406871 | 0.9182953 | 0.2588781 | -1.8460634 | 93.50548 | -7.961212 | -4.915597 | 2.6947909 | -4.828739 | -0.2335291 | 0.2235244 | -1.6375964 | -5.8615842 | 3.2727209 | 3.5683672 | 0.0112065 | 1.2587745 | 0.4999968 | -0.3752456 | -1.8739761 | -0.2379464 | -1.9890846 | 1.4523510 | 2.1725026 | -1.0218243 | 0.7895443 | 0.8952665 | 0.0606613 | -1.6922789 | 17.57932 | 5.824846 | 21.306269 | 35.872770 | 100.32666 | 198.66160 | 150.15671 | 82.012748 | 176.94881 | 183.95851 | 141.62882 | 42.73552 | 53.34466 | 80.98733 | 131.01281 | 185.14814 | 73.94438 | 66.10613 | 74.20800 | 57.13816 | 38.63585 | 19.43314 | 41.18653 | 29.34954 | 34.09512 | -0.1872895 | 0.4808115 | -0.1492917 | 0.2137390 | 0.1219909 | 0.0595207 | 0.2072385 | -0.1410997 | -0.6087014 | 0.5782024 | -0.4875747 | -0.3851620 | -0.5099451 | -0.4866950 | -0.0790980 | -0.3480380 | 0.2234092 | -0.1314042 | 0.1389349 | 0.2740072 | 0.4294181 | 0.2147506 | -0.6054106 | 0.0163128 | -0.2643390 | 3.599611 | 2.380272 | 3.195556 | 2.393710 | 1.969326 | 1.714357 | 2.303348 | 1.774513 | 2.195820 | 2.359424 | 2.138020 | 2.494256 | 3.193837 | 4.141875 | 2.705730 | 2.595008 | 2.324069 | 2.590252 | 3.128677 | 2.322027 | 2.671382 | 2.453939 | 4.095454 | 2.486660 | 3.300506 | -148.1063 | 106126.37 | 2177.672 | 12979235 |
3 (Spectrographic) cross correlation
This analysis correlates the amplitude values in the frequency and time space pairwise for all signals in a selection table. The correlation represents a measure of spectrographic similarity of the signals:
Code
<- cross_correlation(X = lbh_selec_table)
xcor
xcor
Phae.long1.wav-1 | Phae.long1.wav-2 | Phae.long1.wav-3 | Phae.long2.wav-1 | Phae.long2.wav-2 | Phae.long3.wav-1 | Phae.long3.wav-2 | Phae.long3.wav-3 | Phae.long4.wav-1 | Phae.long4.wav-2 | Phae.long4.wav-3 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Phae.long1.wav-1 | 1.0000000 | 0.6638508 | 0.6491063 | 0.1946160 | 0.2615196 | 0.3339740 | 0.2992381 | 0.3383126 | 0.1834400 | 0.1577694 | 0.2048526 |
Phae.long1.wav-2 | 0.6638508 | 1.0000000 | 0.7118060 | 0.2458648 | 0.2660671 | 0.3280084 | 0.2835975 | 0.3409463 | 0.0954318 | 0.0913951 | 0.1307878 |
Phae.long1.wav-3 | 0.6491063 | 0.7118060 | 1.0000000 | 0.2442306 | 0.3080008 | 0.3520654 | 0.3175826 | 0.3426542 | 0.1610333 | 0.1476679 | 0.1905664 |
Phae.long2.wav-1 | 0.1946160 | 0.2458648 | 0.2442306 | 1.0000000 | 0.5949237 | 0.5617453 | 0.5729078 | 0.5002876 | 0.2741691 | 0.2470523 | 0.2871090 |
Phae.long2.wav-2 | 0.2615196 | 0.2660671 | 0.3080008 | 0.5949237 | 1.0000000 | 0.5098819 | 0.5427296 | 0.5103951 | 0.2097443 | 0.1923960 | 0.2334284 |
Phae.long3.wav-1 | 0.3339740 | 0.3280084 | 0.3520654 | 0.5617453 | 0.5098819 | 1.0000000 | 0.7865409 | 0.7247518 | 0.1340282 | 0.1314775 | 0.1516756 |
Phae.long3.wav-2 | 0.2992381 | 0.2835975 | 0.3175826 | 0.5729078 | 0.5427296 | 0.7865409 | 1.0000000 | 0.7259070 | 0.1766590 | 0.1735262 | 0.1979071 |
Phae.long3.wav-3 | 0.3383126 | 0.3409463 | 0.3426542 | 0.5002876 | 0.5103951 | 0.7247518 | 0.7259070 | 1.0000000 | 0.1879558 | 0.1754047 | 0.2092285 |
Phae.long4.wav-1 | 0.1834400 | 0.0954318 | 0.1610333 | 0.2741691 | 0.2097443 | 0.1340282 | 0.1766590 | 0.1879558 | 1.0000000 | 0.5277140 | 0.8161098 |
Phae.long4.wav-2 | 0.1577694 | 0.0913951 | 0.1476679 | 0.2470523 | 0.1923960 | 0.1314775 | 0.1735262 | 0.1754047 | 0.5277140 | 1.0000000 | 0.5197698 |
Phae.long4.wav-3 | 0.2048526 | 0.1307878 | 0.1905664 | 0.2871090 | 0.2334284 | 0.1516756 | 0.1979071 | 0.2092285 | 0.8161098 | 0.5197698 | 1.0000000 |
Spectrographic cross-correlation is the standard way to calculate signal similarity for amplitude variation in frequency and time
Exercise
What does the argument
type
do and how does it affect the performance of the function?What does the
pb
argument do?
4 Dynamic time warping
In time series analysis, time dynamics distortion (DTW) is one of the algorithms to measure the similarity between two time sequences, which may vary in their ‘speed’. The sequences are nonlinearly ‘warped’ in the temporal dimension to determine a measure of their similarity independent of certain nonlinear variations in the temporal dimension.
The freq_DTW()
function extracts the dominant frequency values as a time series and then calculates the acoustic dissimilarity using dynamic time warping. The function uses the approx()
function to interpolate values between the dominant frequency measurements:
Code
<- freq_DTW(lbh_selec_table) dtwdist
Phae.long1.wav-1 | Phae.long1.wav-2 | Phae.long1.wav-3 | Phae.long2.wav-1 | Phae.long2.wav-2 | Phae.long3.wav-1 | Phae.long3.wav-2 | Phae.long3.wav-3 | Phae.long4.wav-1 | Phae.long4.wav-2 | Phae.long4.wav-3 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Phae.long1.wav-1 | 0.0000 | 12.7239 | 27.8228 | 19.2961 | 21.7416 | 21.2271 | 19.4742 | 25.1001 | 26.2900 | 27.1488 | 23.8441 |
Phae.long1.wav-2 | 12.7239 | 0.0000 | 18.5390 | 15.8735 | 20.2081 | 17.6739 | 18.1535 | 24.4244 | 26.3725 | 27.7397 | 24.8443 |
Phae.long1.wav-3 | 27.8228 | 18.5390 | 0.0000 | 29.5158 | 29.0963 | 24.9517 | 28.4032 | 28.1725 | 31.7433 | 33.2878 | 31.1858 |
Phae.long2.wav-1 | 19.2961 | 15.8735 | 29.5158 | 0.0000 | 14.3232 | 13.8198 | 12.7713 | 17.9298 | 20.9547 | 19.6867 | 20.0898 |
Phae.long2.wav-2 | 21.7416 | 20.2081 | 29.0963 | 14.3232 | 0.0000 | 11.3861 | 8.1233 | 11.0131 | 25.7860 | 23.6662 | 22.5058 |
Phae.long3.wav-1 | 21.2271 | 17.6739 | 24.9517 | 13.8198 | 11.3861 | 0.0000 | 7.0170 | 9.9718 | 28.4507 | 31.6782 | 26.2246 |
Phae.long3.wav-2 | 19.4742 | 18.1535 | 28.4032 | 12.7713 | 8.1233 | 7.0170 | 0.0000 | 8.0238 | 24.8983 | 26.0703 | 23.6189 |
Phae.long3.wav-3 | 25.1001 | 24.4244 | 28.1725 | 17.9298 | 11.0131 | 9.9718 | 8.0238 | 0.0000 | 31.0330 | 32.2880 | 28.7885 |
Phae.long4.wav-1 | 26.2900 | 26.3725 | 31.7433 | 20.9547 | 25.7860 | 28.4507 | 24.8983 | 31.0330 | 0.0000 | 10.2553 | 3.6062 |
Phae.long4.wav-2 | 27.1488 | 27.7397 | 33.2878 | 19.6867 | 23.6662 | 31.6782 | 26.0703 | 32.2880 | 10.2553 | 0.0000 | 8.3373 |
Phae.long4.wav-3 | 23.8441 | 24.8443 | 31.1858 | 20.0898 | 22.5058 | 26.2246 | 23.6189 | 28.7885 | 3.6062 | 8.3373 | 0.0000 |
The function returns a matrix with paired dissimilarity values.
If img = TRUE
, the function also produces image files with the spectrograms of the signals listed in the input data frame that shows the location of the dominant frequencies.
Code
freq_DTW(lbh_selec_table, img = TRUE, col = "red", pch = 21, line = FALSE)
Frequency contours can be calculated independently using the freq_ts()
function. These contours can be adjusted manually with the tailor_sels()
function.
Exercise
What do the
length.out
argument infreq_DTW()
?Calculate spectrographic cross-correlation for the inquiry calls from these individuals:
c("206433", "279470", "279533", "279820")
. The extended selection table can be downloaded as follows:
Code
download.file(url = "https://ndownloader.figshare.com/files/21167052",
destfile = "iniquiry_calls.RDS")
- We can use a binary matrix to represent call membership. It has to be a pairwise matrix in which 0 denotes pairs of calls that belong to the same individual and 1 pairs that belong to different individuals. The following function creates this type of matrix:
Code
#function to create group membership binary matrix
<- function(X, labels) {
bi_mats
# create empty matrix to store memebership matrix
<- matrix(nrow = ncol(X), ncol = ncol(X))
mat
# add labels to row and col names
rownames(mat) <- colnames(mat) <- labels
# add 0 if same group and 1 if else
<- lapply(1:(length(labels) - 1), function(i){
out sapply((i + 1):length(labels), function(j)
if (labels[i] == labels[j]) 0 else 1)
})
# add to mat
lower.tri(mat)] <- unlist(out)
mat[
# retunr as distance matrix
return(as.dist(mat))
}
The function takes as arguments the cross-correlation similarity matrix (‘X’ argument) and a label vector indicating group membership (‘labels’ argument). Compare dissimilarity from cross-correlation (1 - correlation matrix) with call membership using Mantel test (you can use vegan::mantel()
)
Do the same test but this time using cepstral coefficient cross-correlation
Do the same test using dynamic time warping distances
5 Additional measures
5.1 Signal-to-noise ratio
sig2noise()
measures this parameter. The duration of the margin in which to measure the background noise must be provided (mar
argument):
Code
<- sig2noise(X = lbh_selec_table, mar = 0.06)
snr
snr
sound.files | channel | selec | start | end | bottom.freq | top.freq | SNR |
---|---|---|---|---|---|---|---|
Phae.long1.wav | 1 | 1 | 1.1693549 | 1.3423884 | 2.220105 | 8.604378 | 21.88086 |
Phae.long1.wav | 1 | 2 | 2.1584085 | 2.3214565 | 2.169437 | 8.807053 | 21.17991 |
Phae.long1.wav | 1 | 3 | 0.3433366 | 0.5182553 | 2.218294 | 8.756604 | 19.79567 |
Phae.long2.wav | 1 | 1 | 0.1595983 | 0.2921692 | 2.316862 | 8.822316 | 23.60318 |
Phae.long2.wav | 1 | 2 | 1.4570585 | 1.5832087 | 2.284006 | 8.888027 | 26.99167 |
Phae.long3.wav | 1 | 1 | 0.6265520 | 0.7577715 | 3.006834 | 8.822316 | 25.80051 |
Phae.long3.wav | 1 | 2 | 1.9742132 | 2.1043921 | 2.776843 | 8.888027 | 26.05994 |
Phae.long3.wav | 1 | 3 | 0.1233643 | 0.2545812 | 2.316862 | 9.315153 | 24.61822 |
Phae.long4.wav | 1 | 1 | 1.5168116 | 1.6622365 | 2.513997 | 9.216586 | 28.15947 |
Phae.long4.wav | 1 | 2 | 2.9326920 | 3.0768784 | 2.579708 | 10.235116 | 29.30194 |
Phae.long4.wav | 1 | 3 | 0.1453977 | 0.2904966 | 2.579708 | 9.742279 | 24.75542 |
5.2 Inflections
Inflections in this case are defined as changes in the slope of a frequency contour. They can be used as a measure of frequency modulation. They can be calculated using the inflections()
function on previously measured frequency contours:
Code
<- freq_ts(X = lbh_selec_table)
cntrs
<- inflections(cntrs) inflcts
sound.files | selec | inflections |
---|---|---|
Phae.long1.wav | 1 | 9 |
Phae.long1.wav | 2 | 10 |
Phae.long1.wav | 3 | 8 |
Phae.long2.wav | 1 | 13 |
Phae.long2.wav | 2 | 9 |
Phae.long3.wav | 1 | 11 |
Phae.long3.wav | 2 | 8 |
Phae.long3.wav | 3 | 10 |
Phae.long4.wav | 1 | 5 |
Phae.long4.wav | 2 | 5 |
Phae.long4.wav | 3 | 5 |
5.3 Calculates parameters at higher levels of organization
Vocalizations can be organized above the basic signal units like in long repertoire songs or multi-syllable calls. We can calculate average or extreme values of acoustic parameters of the sub-units for these higher levels of organization using the function song_analysis()
:
Code
# add a 'song' column
$song <- rep(1:4, each = 3)[1:11]
lbh_selec_table
# measure default parameters
song_analysis(X = lbh_selec_table, song_colm = "song", parallel = 1, pb = TRUE)
sound.files | selec | start | end | top.freq | bottom.freq | song | num.elms | elm.duration | freq.range | song.duration | song.rate | gap.duration |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phae.long1.wav | 1 | 0.3433366 | 2.3214565 | 8.807053 | 2.169437 | 1 | 3 | 0.1703334 | 6.637617 | 1.9781199 | 1.6528271 | 0.7335599 |
Phae.long2.wav | 1 | 0.1595983 | 1.5832087 | 8.888027 | 2.284006 | 2 | 2 | 0.1293606 | 6.604022 | 1.4236104 | 1.5414731 | 1.1648893 |
Phae.long3.wav | 1 | 0.6265520 | 0.7577715 | 8.822316 | 3.006834 | 2 | 1 | 0.1312195 | 5.815482 | 0.1312195 | NA | NA |
Phae.long3.wav | 1 | 0.1233643 | 2.1043921 | 9.315153 | 2.316862 | 3 | 2 | 0.1306979 | 6.998291 | 1.9810279 | 1.0805852 | 1.7196320 |
Phae.long4.wav | 1 | 1.5168116 | 1.6622365 | 9.216586 | 2.513997 | 3 | 1 | 0.1454249 | 6.702589 | 0.1454249 | NA | NA |
Phae.long4.wav | 1 | 0.1453977 | 3.0768784 | 10.235116 | 2.579708 | 4 | 2 | 0.1446427 | 7.655408 | 2.9314808 | 0.7175417 | 2.6421954 |
This can also be done on parameters extracted from other functions:
Code
# measure acoustic parameters
<- spectro_analysis(lbh_selec_table[1:8, ], bp = c(1, 11), 300, fast = TRUE)
sp
<- merge(sp, lbh_selec_table[1:8, ], by = c("sound.files", "selec"))
sp
# caculate song-level parameters for all numeric parameters
song_analysis(X = sp, song_colm = "song", parallel = 1, pb = TRUE)
sound.files | selec | start | end | top.freq | bottom.freq | song | duration | meanfreq | sd | freq.median | freq.Q25 | freq.Q75 | freq.IQR | time.median | time.Q25 | time.Q75 | time.IQR | skew | kurt | sp.ent | time.ent | entropy | sfm | meandom | mindom | maxdom | dfrange | modindx | startdom | enddom | dfslope | meanpeakf | num.elms | elm.duration | freq.range | song.duration | song.rate | gap.duration |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phae.long1.wav | 1 | 0.3433366 | 2.3214565 | 8.807053 | 2.169437 | 1 | 0.1703334 | 6.214573 | 1.886934 | 6.398906 | 5.279726 | 7.088539 | 1.808814 | 0.0812936 | 0.0493581 | 0.1209826 | 0.0716246 | 2.641668 | 11.645191 | 0.9311848 | 0.8946313 | 0.8330688 | 0.5799687 | 6.717429 | 4.2125 | 8.4875 | 4.2750 | 4.743245 | 7.0625 | 7.2125 | 0.8991633 | 6.958953 | 3 | 0.1703334 | 6.637617 | 1.9781199 | 1.652827 | 0.7335599 |
Phae.long2.wav | 1 | 0.1595983 | 1.5832087 | 8.888027 | 2.284006 | 2 | 0.1293606 | 6.587160 | 1.811403 | 6.713650 | 5.632792 | 7.562909 | 1.930116 | 0.0777719 | 0.0538421 | 0.1016897 | 0.0478477 | 2.543173 | 11.544951 | 0.9264893 | 0.9119612 | 0.8449154 | 0.5528136 | 6.397644 | 4.0125 | 7.7250 | 3.7125 | 5.151639 | 6.0000 | 6.4125 | 3.4570754 | 7.059628 | 2 | 0.1293606 | 6.604022 | 1.4236104 | 1.541473 | 1.1648893 |
Phae.long3.wav | 1 | 0.6265520 | 0.7577715 | 8.822316 | 3.006834 | 2 | 0.1312195 | 6.737204 | 1.649035 | 6.724085 | 6.053354 | 7.585366 | 1.532012 | 0.0626394 | 0.0402682 | 0.0894848 | 0.0492167 | 2.502406 | 10.411846 | 0.9105878 | 0.9112879 | 0.8298076 | 0.4934158 | 6.622331 | 4.8375 | 8.0625 | 3.2250 | 3.674419 | 7.0125 | 8.0625 | 8.0018575 | 6.757601 | 1 | 0.1312195 | 5.815482 | 0.1312195 | NA | NA |
Phae.long3.wav | 1 | 0.1233643 | 2.1043921 | 9.315153 | 2.316862 | 3 | 0.1306979 | 6.713171 | 1.644077 | 6.711681 | 6.046112 | 7.591542 | 1.545430 | 0.0664694 | 0.0410781 | 0.0940970 | 0.0530189 | 2.280022 | 8.186695 | 0.9069198 | 0.9123649 | 0.8274417 | 0.4830629 | 6.315848 | 4.6500 | 7.2750 | 2.6250 | 4.211745 | 5.7000 | 6.8250 | 8.5827023 | 6.719848 | 2 | 0.1306979 | 6.998291 | 1.9810279 | 1.080585 | 1.7196320 |
Calculate song-level parameters selecting parameters with ‘mean_colm’:
Code
# caculate song-level parameters selecting parameters with mean_colm
song_analysis(X = sp, song_colm = "song",mean_colm = c("dfrange", "duration"), parallel = 1, pb = TRUE)
sound.files | selec | start | end | top.freq | bottom.freq | song | dfrange | duration | num.elms | elm.duration | freq.range | song.duration | song.rate | gap.duration |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phae.long1.wav | 1 | 0.3433366 | 2.3214565 | 8.807053 | 2.169437 | 1 | 4.2750 | 0.1703334 | 3 | 0.1703334 | 6.637617 | 1.9781199 | 1.652827 | 0.7335599 |
Phae.long2.wav | 1 | 0.1595983 | 1.5832087 | 8.888027 | 2.284006 | 2 | 3.7125 | 0.1293606 | 2 | 0.1293606 | 6.604022 | 1.4236104 | 1.541473 | 1.1648893 |
Phae.long3.wav | 1 | 0.6265520 | 0.7577715 | 8.822316 | 3.006834 | 2 | 3.2250 | 0.1312195 | 1 | 0.1312195 | 5.815482 | 0.1312195 | NA | NA |
Phae.long3.wav | 1 | 0.1233643 | 2.1043921 | 9.315153 | 2.316862 | 3 | 2.6250 | 0.1306979 | 2 | 0.1306979 | 6.998291 | 1.9810279 | 1.080585 | 1.7196320 |
Calculate song-level parameters for selecting parameters with ‘mean_colm’, ‘max_colm’ and ‘min_colm’ and weighted by duration:
Code
song_analysis(X = sp, weight = "duration", song_colm = "song",
mean_colm = c("dfrange", "duration"), min_colm = "mindom", max_colm = "maxdom",
parallel = 1, pb = TRUE)
sound.files | selec | start | end | top.freq | bottom.freq | song | dfrange | duration | min.mindom | max.maxdom | num.elms | elm.duration | freq.range | song.duration | song.rate | gap.duration |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phae.long1.wav | 1 | 0.3433366 | 2.3214565 | 8.807053 | 2.169437 | 1 | 4.281334 | 0.1704927 | 3.8625 | 8.6625 | 3 | 0.1703334 | 6.637617 | 1.9781199 | 1.652827 | 0.7335599 |
Phae.long2.wav | 1 | 0.1595983 | 1.5832087 | 8.888027 | 2.284006 | 2 | 3.691095 | 0.1294402 | 3.0375 | 7.8375 | 2 | 0.1293606 | 6.604022 | 1.4236104 | 1.541473 | 1.1648893 |
Phae.long3.wav | 1 | 0.6265520 | 0.7577715 | 8.822316 | 3.006834 | 2 | 3.225000 | 0.1312195 | 4.8375 | 8.0625 | 1 | 0.1312195 | 5.815482 | 0.1312195 | NA | NA |
Phae.long3.wav | 1 | 0.1233643 | 2.1043921 | 9.315153 | 2.316862 | 3 | 2.623809 | 0.1307000 | 4.6125 | 7.5375 | 2 | 0.1306979 | 6.998291 | 1.9810279 | 1.080585 | 1.7196320 |
Exercise
- Spix’s disc-winged bats (Thyroptera tricolor) its a Neotropical species that uses a specific call type to reply to social mates looking for their roosts. Those ‘response’ calls look like this:
An extended selection table with response calls can be read from github as follows:
Code
download.file(url = "https://github.com/maRce10/OTS_BIR_2023/raw/master/examples/response_calls.RDS",
destfile = "./examples/response_calls.RDS")
<- readRDS("./examples/response_calls.RDS") response_calls
Calculate spectrographic parameters (
spectro_analysis()
) for the Spix’s disc-winged bat response calls.Summarize parameters by call (
song_analysis()
). To do that you should add the column ‘start’, ‘end’ and ‘call’ to the output ofspectro_analysis()
6 References
Araya-Salas M, A Hernández-Pinsón N RojasΔ, G Chaverri. (2020). Ontogeny of an interactive call-and-response system in Spix’s disc-winged bats. Animal Behaviour.
Araya-Salas M, Smith-Vidaurre G (2017) warbleR: An R package to streamline analysis of animal acoustic signals. Methods Ecol Evol 8:184–191.
Lyon, R. H., & Ordubadi, A. (1982). Use of cepstra in acoustical signal analysis. Journal of Mechanical Design, 104(2), 303-306.
Salamon, J., Jacoby, C., & Bello, J. P. (2014). A dataset and taxonomy for urban sound research. In Proceedings of the 22nd ACM international conference on Multimedi. 1041-1044.
Session information
R version 4.2.2 Patched (2022-11-10 r83330)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=es_ES.UTF-8 LC_NUMERIC=C
[3] LC_TIME=es_CR.UTF-8 LC_COLLATE=es_ES.UTF-8
[5] LC_MONETARY=es_CR.UTF-8 LC_MESSAGES=es_ES.UTF-8
[7] LC_PAPER=es_CR.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=es_CR.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] kableExtra_1.3.4 warbleR_1.1.28 NatureSounds_1.0.4 knitr_1.42
[5] seewave_2.2.0 tuneR_1.4.4
loaded via a namespace (and not attached):
[1] xfun_0.39 pbapply_1.7-0 vctrs_0.6.2 colorspace_2.1-0
[5] testthat_3.1.8 htmltools_0.5.5 viridisLite_0.4.2 yaml_2.3.7
[9] rlang_1.1.1 glue_1.6.2 foreach_1.5.2 lifecycle_1.0.3
[13] stringr_1.5.0 munsell_0.5.0 rvest_1.0.3 htmlwidgets_1.5.4
[17] codetools_0.2-19 evaluate_0.21 fastmap_1.1.1 fftw_1.0-7
[21] parallel_4.2.2 highr_0.10 Rcpp_1.0.10 scales_1.2.1
[25] webshot_0.5.4 jsonlite_1.8.4 Sim.DiffProc_4.8 soundgen_2.5.3
[29] systemfonts_1.0.4 Deriv_4.1.3 brio_1.1.3 rjson_0.2.21
[33] digest_0.6.31 stringi_1.7.12 dtw_1.23-1 cli_3.6.1
[37] tools_4.2.2 bitops_1.0-7 magrittr_2.0.3 RCurl_1.98-1.12
[41] proxy_0.4-27 MASS_7.3-58.2 xml2_1.3.4 shinyBS_0.61.1
[45] rmarkdown_2.21 svglite_2.1.0 httr_1.4.6 rstudioapi_0.14
[49] iterators_1.0.14 R6_2.5.1 signal_0.7-7 compiler_4.2.2